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Abstract

Pre-training on large-scale datasets and utilizing
margin-based loss functions have been highly successful
in training models for high-resolution face recognition.
However, these models struggle with low-resolution face
datasets, in which the faces lack the facial attributes nec-
essary for distinguishing different faces. Full fine-tuning
on low-resolution datasets, a naive method for adapting
the model, yields inferior performance due to catastrophic
forgetting of pre-trained knowledge. Additionally the do-
main difference between high-resolution (HR) gallery im-
ages and low-resolution (LR) probe images in low resolu-
tion datasets leads to poor convergence for a single model
to adapt to both gallery and probe after fine-tuning. To this
end, we propose PETALface, a Parameter-Efficient Trans-
fer Learning approach for low-resolution FACE recogni-
tion. Through PETALface, we attempt to solve both the
aforementioned problems. (1) We solve catastrophic for-
getting by leveraging the power of parameter efficient fine-
tuning(PEFT). (2) We introduce two low-rank adaptation
modules to the backbone, with weights adjusted based on
the input image quality to account for the difference in qual-
ity for the gallery and probe images. To the best of our
knowledge, PETALface is the first work leveraging the pow-
ers of PEFT for low resolution face recognition. Extensive
experiments demonstrate that the proposed method outper-
forms full fine-tuning on low-resolution datasets while pre-
serving performance on high-resolution and mixed-quality
datasets, all while using only 0.48% of the parameters. The
code and models will be made publicly available after the
review process.

1. Introduction

Face recognition (FR) is one of the primal tasks in
biometrics and has been extensively studied for decades
due to its importance in device authentication, banking, fi-
nance, healthcare, social media, entertainment, retail, mar-

Figure 1. The proposed PETALface: a parameter efficient trans-
fer learning approach adapts to low-resolution datasets beating the
performance of pre-trained models with negligible drop in perfor-
mance on high-resolution and mixed-quality datasets. PETALface
enables development of generalized models achieving compet-
itive performance on high-resolution (LFW, CFP-FP, CPLFW,
AgeDB, CALFW, CFP-FF) and mixed-quality datasets (IJB-B,
IJB-C) with big enhancements in low-quality surveillance qual-
ity datasets (TinyFace, BRIAR, IJB-S).

keting, border control, security and surveillance. Early face
recognition methods are evaluated using high-quality eval-
uation datasets and existing state-of-the-art face recogni-
tion methods have saturated these benchmarks, with several
works achieving over 98% verification accuracy on high-
resolution face recognition datasets like LFW [18], CFP-
FP [44], CALFW [62] and AgeDB [42]. Recent efforts in
face recognition [7, 10, 21] have shifted to low-quality face
recognition because of its widespread use in surveillance-
related applications. Moreover, analysis and generalizabil-
ity of current methods in low-resolution face-datasets give
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Figure 2. (a) An illustration of the gallery and probe images from low-resolution dataset (BRIAR). Gallery images usually are high quality
compared to the probe images. (b) t-SNE plot for the gallery and probe images of the BRIAR dataset. (c) Average CNN-IQA scores of
gallery and probe images for 50 identities of the BRIAR dataset.

a measure of the robustness of the recognition algorithm.

Low-resolution datasets [7, 26] contain images with
poor clarity as shown in Figure 2(a), making it challeng-
ing to extract meaningful discriminative features essential
for face recognition and verification. Common degrada-
tions include images with low resolution, compression arti-
facts, motion blur, occlusion, lighting variations, and atmo-
spheric turbulence. Consequently, deep networks trained on
high-resolution datasets perform poorly on low-resolution
datasets. Moreover, low-resolution datasets are usually
small, with a limited number of subjects, as curating them
requires significant time, effort, and investment. There are
very few low-resolution face recognition datasets that exist,
most of which are private. Therefore, low-resolution face
recognition remains an unsolved problem with significant
room for improvement. Although, there has been a tran-
sition to datasets such as IJB-B [53] and IJB-C [40], and
very-low resolution datasets like TinyFace [7], BRIAR [8]
and IJB-S [26], research efforts remain focused on margin-
based loss functions that create separable identity clusters
on the hypersphere.

Existing methods [20, 30] force the learning of high-
resolution and low-resolution face images in a single en-
coder, failing to account for the domain differences between
them, which contradicts our belief. We claim that high-
resolution and low-resolution images have distinct distribu-
tions and require separate encoders to extract meaningful
features for classification. Figure 2(b) shows t-SNE visual-
ization of the BRIAR dataset, where the clusters of gallery
(high-resolution) and probe images (low-resolution) images
are clearly separated, highlighting the domain difference
between them. The bar plot shown in Figure 2(c) further
supports this claim showing a clear difference in CNN-IQA
scores between the gallery and probe images. This validates
our claim that high-quality gallery images and low-quality
probe images belong to distinct domains. A straightforward

solution is to train two separate encoders for high-resolution
and low-resolution data, but this creates misalignment in the
embedding space as the two encoders do not share a com-
mon final layer.

A naive approach to adapting pre-trained models to low-
resolution datasets is supervised full fine-tuning on these
datasets. However, as mentioned, low-resolution datasets
are small in size, and updating a model with a large number
of parameters on a small low-resolution dataset results in
poor convergence. This makes the model prone to catas-
trophic forgetting and we see a drop in performance on
high-resolution and mixed-quality datasets. We illustrate
this phenomenon and highlight the drop in performance
in Figure 1. Existing methods perform poorly in low-
resolution face recognition due to the following issues: 1)
small training sets of low-resolution datasets, 2) domain dif-
ferences between low-resolution and high-resolution data,
and 3) catastrophic forgetting while fine-tuning for low-
resolution datasets.

To address the above challenges, we propose a
parameter-efficient transfer learning technique called
PETALface, which utilizes low-rank adaptation
(LoRA) [17] of attention layers to adapt the pretrained
model to low-resolution datasets. We introduce two
low-rank adaptation modules that are constrained during
training and act as separate proxy encoders for high-
resolution and low-resolution data, respectively, with a
common final embedding layer that helps avoid misalign-
ment in the embedding space. The final output of the model
depends on the weightage of these two modules, which
is determined based on the image-quality scores of the
input images. These scores are provided by an off-the-shelf
NR-IQA network and passed to the model along with the
images. The use of LoRA ensures that only a small number
of parameters are added and trained, drastically reducing
the training time. Low-rank adaptation preserves the



feature extraction capabilities learned from the pre-training
dataset and maintains performance on high-resolution and
mixed-quality datasets, resulting in an efficient transfer to
low-resolution datasets. The key contributions of our work
are summarized below:

• We introduce the use of the LoRA-based PETL tech-
nique to adapt large pre-trained face-recognition mod-
els to low-resolution datasets.

• We propose an image-quality-based weighting of
LoRA modules to create separate proxy encoders for
high-resolution and low-resolution data, ensuring ef-
fective extraction of embeddings for face recognition.

• We demonstrate the superiority of PETALface in
adapting to low-resolution datasets, outperform-
ing other state-of-the-art models on low-resolution
benchmarks while maintaining performance on high-
resolution and mixed-quality datasets.

2. Related Work

Face Recognition. Face recognition has significantly
progressed from using hand-crafted features [1, 2] to uti-
lizing deep learning models [11, 43, 50, 59]. Several
works [9, 35, 51, 52] propose different variants of margin-
based loss functions for face recognition that show im-
pressive performance on high-resolution benchmarks [18,
42, 45]. However, much less attention has been given
to low-resolution unconstrained face recognition bench-
marks [7, 8, 26], which contain face images that are some-
times unidentifiable due to extreme degradations. To ad-
dress this, some approaches [20, 30] incorporate adaptive-
ness in their training or loss functions to effectively lever-
age the low-quality images in large datasets [14, 64], based
on the utility and quality of the low-resolution face images.

Low Resolution Face-Recognition. The main chal-
lenge in low-resolution face recognition is the domain dif-
ference between high-resolution gallery images captured in
controlled environments and degraded probe images from
surveillance cameras. [48, 56] use super-resolution (SR)
models to upscale low-resolution images to high-resolution
images to close the domain gap between gallery and probe
images. However, several other works [23, 32, 58] sug-
gest that this approach causes identity hallucination. Many
studies [16, 47, 54, 55] have followed, relating recogni-
tion to visual quality. However, this is infeasible as it
requires paired high-resolution and low-resolution images
of the same subject, which are mostly unavailable in low-
resolution datasets. [39, 63] use knowledge distillation to
transfer knowledge from the high-resolution domain to the
low-resolution domain. [13] utilizes a teacher-student con-
figuration with help of synthetically degraded samples. [12]
achieves cross-resolution distillation by employing an addi-
tional network between student and teacher network. [19]

proposed distribution distillation loss and [37, 38] intro-
duced augmentations to mitigate the performance gap be-
tween high-resolution and low-resolution samples. In our
work, we adapt high-resolution model to low-resolution
images by parameter efficient transfer learning, employing
low-rank adaptation modules weighted based on the image
quality of the input.

Parameter-Efficient Transfer Learning. Parameter-
efficient transfer learning was initially introduced in the
field of NLP [15, 17, 28, 31, 57]. It aims to achieve com-
petitive performance with full fine-tuning by training only
a small fraction of the total number of parameters. Re-
cently, it has been adopted in the field of computer vision
for various applications [5, 6, 22, 24]. VPT [22] appends
learnable prompts to frozen transformer layer. Adapter [15]
employs feedforward-down and feedforward-up blocks to
adapt the pre-trained model. LoRA [17] leverages the low-
rank nature of attention weights and performs matrix de-
composition for parameter efficiency. Several variants of
LoRA have been proposed since then. DyLoRA [49] trun-
cates the up-projection and down-projection matrices in the
objective, further reducing the number of trainable param-
eters. ResLoRA [46] adds a residual path for stable train-
ing. DoRA [34] decomposes pre-trained weight into magni-
tude and direction components, and efficiently updates the
direction component. NOAH [60] and GLoRA [4] intro-
duce Neural Architecture Search (NAS) to combine differ-
ent methods. SSF [33] proposes a scale and shift learn-
able transformation on features of the pre-trained model.
FacT [25] uses a tensorization-decomposition framework to
break down the weight increments into lightweight factors.
In our work, we use LoRA to fine-tune a pre-trained model
on low-resolution face images, resulting in improved per-
formance on low-resolution benchmarks while preserving
the knowledge of the pre-trained model.

3. Proposed Work

In this section, we provide the necessary background on
the sub-modules utilized in our method, namely LoRA [17],
followed by a detailed explanation of the proposed fine-
tuning procedure: PETALface.

3.1. Low-Rank Adaptation

Low-rank adaptation (LoRA) [17], is a technique that
was first introduced to adapt large language modules to
low data regime, while retaining the original knowledge
learned by a network. To achieve this, additional low-
rank parameter modules are added in parallel to the pre-
trained weights. During fine-tuning, the original pre-trained
weights are kept frozen, and only the LoRA blocks are up-
dated. For a pre-trained weight matrix W0 2 Rm⇥n of a
dense layer in the network, LoRA appends a weight up-
date �W 2 Rm⇥n, utilizing a low-rank decomposition



Figure 3. Overview of the proposed PETALface. We include an additional trainable module in linear layers present in attention layers
and the final feature projection MLP. The trainable module is highlighted on the right. Specifically, we add two LoRA layers, where the
weightage ↵ is decided based on the input-image quality, computed using an off-the-shelf image quality assessment network (IQA).

such that �W = WupWdw, where Wup 2 Rm⇥r, Wdw 2
Rr⇥n, and r ⌧ min(m,n). Here, r is the rank hyper-
parameter which controls the bottleneck dimension of the
low-rank decomposition. The output xout of the dense layer
with input xin can be represented as:

xout = W0xin +�Wxin = W0xin + ↵WupWdwxin

Here ↵ is a constant scale hyper-parameter. In the initial
work [17], Wup matrix is initialized with zeros, and the
Wdw matrix is initialized as a Gaussian distribution with
zero mean and standard deviation 1/r. The zero initializa-
tion ensures that during the start of the fine-tuning process,
the default configuration corresponds to the pre-trained one.
Therefore, any further training should improve the perfor-
mance over the pre-trained results.

To the best of our knowledge, PETALface is the first to
explore parameter-efficient transfer learning methods, such
as LoRA, for adapting to low-resolution face recognition
datasets. A naive LoRA over a pre-trained transformer net-
work trained for face recognition adds trainable parameters
parallel to the attention layers, while the final layer that
outputs the embeddings is shared. This shared layer en-
ables the alignment of high-resolution and low-resolution
features in the embedding space. It helps alleviate the is-
sue of embedding misalignment that happens while train-
ing two separate encoders for gallery and probe. Further,
LoRA can be treated as a plug-in module, which could be
turned on or off, hence it preserves the pre-trained knowl-
edge of models, performing on par with high-resolution and
mixed-quality datasets and on plugging in improves the per-
formance on low-resolution datasets. However, such a naive
implementation of LoRA suffers a disadvantage that gallery

and probe images share the same parameters even though
in most cases gallery images are easier to recognize than
probe images. Please refer to Figure ??. Consequently, if
common weights are fit to both datasets, this might lead to
an average fit between probe and gallery images. To ad-
dress this issue of domain difference between gallery and
probe images, we propose PETALface, which employs twin
LoRA modules weighted based on the input image quality
during training. This approach further boosts performance
on low-resolution datasets while maintaining performance
on high-resolution datasets.

3.2. PETALface

PETALface introduces a novel approach for adapting to
low-resolution face images using two LoRA (Low-Rank
Adaptation) blocks in each adaptation layer of the network.
These blocks are constrained during training to ensure that
one acts as a proxy encoder for high-resolution images and
the other for low-resolution images. We achieve this by as-
signing different weights to these blocks based on the input
image quality, effectively creating proxy encoders tailored
to the quality of the input. This dynamic weight assignment
allows PETALface to better handle varying input qualities,
enhancing overall performance. For PETALface, we add
two LoRA blocks parallel to the attention layer, which are
weighted by a parameter in (0, 1) depending on the input-
image quality. The use of two LoRA blocks, along with the
backbone network, enables meaningful extraction of fea-
tures from both high-resolution and low-resolution images,
which is difficult to achieve with a single encoder due to the
domain difference, as previously discussed. Additionally,
we add a LoRA block parallel to the last layer to ensure that



the final embeddings are aligned even after adaptation to the
domain of the low resolution dataset.

Specifically, let the two LoRA blocks parallel to a pre-
trained weight matrix W0 2 Rm⇥n of a dense layer be
W1 2 Rm⇥n and W2 2 Rm⇥n. Given a batch of p input
images X = {xi | 0  i < p}, PETALface calculates the
image quality score using an image quality estimator �(x),
represented as Q = {qi | 0  i < p 3 qi = �(xi), 8 0 
i < p}. For each dataset we fine-tune on, we sample a ran-
dom l number of samples x1, x2, . . . , xl and calculate an
estimate of the mean µ and the standard deviation � for the
quality score.

µ =
1

l

lX

i=1

�(xi), � =

vuut1

l

lX

i=1

(�(xi)� µ)2

We set a threshold t = µ+� for the whole dataset and then
transform the quality scores qi of each sample into weigh-
tage ↵i for the LoRA blocks, using the following equation:

↵i =

8
><

>:

0.5 if qi = t

0.5� (t� qi) if qi < t

0.5 + (qi � t) if qi > t

This transformation regularizes the weightages per sample,
ensuring that the weightages given to the LoRA blocks are
continuous rather than discrete 0 and 1. It also stabilizes the
training of PETALface and leads to smooth convergence of
the loss. The final output is given by:

xout = W0(x) + ↵W1(x) + (1� ↵)W2(x)

Here, based on the weightage ↵,

Ŵ (x) = W0(x) + ↵W1(x) + (1� ↵)W2(x)

acts as a proxy encoder for high-resolution images as
well as low-resolution images. The proposed method al-
lows for separate encoders for different resolutions to ex-
ist within a single backbone, differing only by a few low-
rank parameters. This approach achieves the dual objec-
tives of resolution-specific encoders and an aligned embed-
ding space, enhancing performance in low-resolution face
recognition and preserving pre-trained knowledge.

The low-rank blocks can be added in parallel at various
locations. For finding the most suitable layers in a trans-
former based recognition network to add LoRA blocks, we
tested different LoRA placements, as shown in Table 3, and
chose the best performing configuration. Specifically, we
found that the most effective layers are the attention (qkv)
linear weights along with the final feature layer. Addition-
ally, we ablated over various ranks for low-rank decompo-
sition and set it to 8, which delivered superior performance.
The rank of a LoRA block is generally set low because the
attention matrix has an intrinsic low-rank [17], which also
helps minimize the number of trainable parameters.

4. Experiments

4.1. Datasets

We employ WebFace4M and WebFace12M [64] as our
pre-training datasets, which include about 4M and 12M mil-
lion images, with approximately 205, 000 and 617, 000 dis-
tinct identities, respectively. To adapt the model to low-
resolution images, we fine-tune it on the training sets of
TinyFace [7] and BRIAR [8]. We evaluate the fine-tuned
models on the test sets of TinyFace [7], IJB-S [26], and
BRIAR [8], demonstrating the superiority of our proposed
fine-tuning procedure. TinyFace [7] comprises 169, 403
low-resolution images of 5, 139 identities, with a training
subset containing 7, 804 images of 2, 570 identities. IJB-
S [26] is a surveillance video-based face dataset consist-
ing of 398 videos and 202 identities. It is employed under
three protocols: Surveillance-to-Surveillance, Surveillance-
to-Single, and Surveillance-to-Booking. Surveillance refers
to surveillance videos, Single indicates high-quality enroll-
ment images, and Booking includes multiple enrollment im-
ages captured from various angles. The BRIAR [8] train-
ing set consists of 550, 000 images from 577 unique identi-
ties. For evaluation on BRIAR, we adhere to BRIAR Pro-
tocol 3.1 (face included treatment) [8]. This protocol in-
cludes a gallery of 86, 958 controlled images representing
615 identities, and a probe set comprising 5, 435 clips from
3, 441 unique field videos representing 260 identities. Addi-
tionally, we show that PETALface adapts to low-resolution
face images without forgetting the pre-trained knowledge
by evaluating it on six high-resolution datasets: LFW [18],
CFP-FP [44], CPLFW [61], AgeDB [42], CALFW [62],
and CFP-FF [44], as well as two mixed-quality datasets:
IJB-B [53] and IJBC [40].

4.2. Evaluation Setup & Metrics

To validate our proposed claims, we organize our exper-
iments into two protocols. In Protocol 1, we fine-tune our
models on the training set of TinyFace and evaluate them
on its test set. Additionally, we evaluate the models on
high-resolution and mixed-quality datasets. This protocol
aims to highlight the capability of PETALface to adapt to
low-resolution datasets while maintaining performance on
high-resolution and mixed-quality datasets. In Protocol 2,
we fine-tune the models on the BRIAR dataset and evalu-
ate them using BRIAR Protocol 3.1 and on IJB-S. We show
that PETALface performs better than full fine-tuning and
naive LoRA. We evaluate the models on high-resolution and
mixed-quality datasets using 1:1 verification accuracy and
TAR@FAR at different thresholds, respectively. Rank re-
trieval (Rank-1, Rank-5, and Rank-10) is used for TinyFace.
We report TAR@FAR at different thresholds and closed-set
rank retrieval (Rank-1, Rank-5, and Rank-20) for BRIAR.
For IJB-S, we report open-set TPIR@FPIR=1%/10% and



Training Loss Dataset Arch.

High-Resolution Mixed-Quality Low-resolution

LFW [18] CFP-FP [44] CPLFW [61] AgeDB [42] CALFW [62] CFP-FF [44] IJB-B [53] IJB-C [40] TinyFace [7]

Verification Accuracy TAR@FAR=0.01% Rank-1 Rank-5 Rank-10

Pre-trained CosFace [51] WBF4M R50 99.68 96.83 93.28 96.88 95.63 99.70 94.09 96.01 72.71 76.36 78.99
Pre-trained ArcFace [9] WBF4M R50 99.67 96.71 93.41 96.81 95.71 99.75 94.02 95.99 73.04 76.85 79.45
Pre-trained AdaFace [30] WBF4M R50 99.78 97.14 93.81 97.26 95.98 99.81 94.95 96.67 73.49 76.60 79.07
Pre-trained CosFace [51] WBF4M ViT-B 99.73 97.30 94.31 97.51 95.95 99.87 95.18 96.87 73.57 76.95 78.94
Pre-trained ArcFace [9] WBF4M ViT-B 99.82 97.23 93.68 97.53 95.91 99.80 94.91 96.64 72.74 76.28 78.13
Pre-trained AdaFace [30] WBF4M ViT-B 99.76 97.00 93.75 96.85 95.71 99.80 94.90 96.52 74.03 77.22 79.37
Pre-trained CosFace [51] WBF4M Swin-B 99.78 96.75 93.76 97.65 95.98 99.87 95.18 96.79 72.74 76.79 79.18
Pre-trained ArcFace [9] WBF4M Swin-B 99.76 96.77 93.93 97.35 95.83 99.87 94.87 96.66 73.31 76.68 79.23

Full-FT CosFace [51] WBF4M Swin-B 98.50 89.52 84.88 85.10 89.15 97.55 75.22 79.47 71.32 76.42 79.45
Full-FT ArcFace [9] WBF4M Swin-B 98.31 88.94 84.00 83.45 88.33 97.14 71.84 76.10 71.11 76.63 79.96
LoRA CosFace [51] WBF4M Swin-B 99.65 96.61 93.38 97.35 95.75 99.84 93.57 95.63 75.37 78.88 82.02

LoRA ArcFace [9] WBF4M Swin-B 99.73 96.28 93.20 96.71 95.68 99.74 93.38 95.28 75.64 78.99 81.43
PETALface CosFace [51] WBF4M Swin-B 99.68 96.61 93.50 97.40 95.76 99.85 93.79 95.67 75.45 79.05 81.19
PETALface ArcFace [9] WBF4M Swin-B 99.66 96.37 93.18 96.45 95.61 99.80 93.29 95.27 75.72 78.86 81.70

PETALface ArcFace [9] WBF12M Swin-B 99.76 97.31 94.25 98.08 95.80 99.91 95.17 96.87 76.66 79.64 81.38

Table 1. Results of Protocol 1: The models are fine-tuned on train set of TinyFace and tested on several high-resolution, mixed-quality
and TinyFace dataset. PETALface adapts to the low-resolution data achieving SOTA results, preserving its performance on other datasets.
[BLUE] indicates the best results for models trained on WebFace4M [64].

closed-set rank retrieval (Rank-1, Rank-5, and Rank-10).

4.3. Implementation Details

We re-trained all baseline models, consisting of configu-
rations with different backbones (R50, ViT-B, and Swin-N)
and loss functions (CosFace, ArcFace, and AdaFace). To
ensure a fair comparison, we tested all models on the same
cropped and aligned test sets. We fine-tuned the models
using the AdamW optimizer with a weight decay of 0.1.
A Polynomial LR scheduler was employed with an initial
learning rate of 4e�5 during training. We sampled l = 1000
images from the fine-tuning dataset to calculate the mean µ
and variance �, which were used to determine the threshold
t for calculating weightages for the LoRA blocks. When
fine-tuning on TinyFace, we utilized 2 warm-up epochs and
trained the model for 40 epochs with a batch size of 8.
For BRIAR, we used 1 warm-up epoch and fine-tuned for
10 epochs with the same batch size. We applied a rank
of 8 for low-rank decomposition on TinyFace and 32 for
BRIAR. This difference is due to TinyFace having a rel-
atively smaller training set of approximately ⇡ 7000 im-
ages, compared to BRIAR’s ⇡ 300k images. The larger
rank for BRIAR increases the number of trainable parame-
ters to accommodate the larger train set. We employ CNN-
IQA [27]as our NR-IQA model to classify the images as
low-resolution or high-resolution. All code was written
in PyTorch, and the models were trained on eight A5000
GPUs, each with 24GB of memory. The detailed imple-
mentation is provided in the supplementary document.

5. Results

In this section, we showcase PETALface’s superiority
in transferring to low-resolution datasets maintaining com-
petitive performance on high-resolution and mixed-quality

datasets, and compare it with other baselines. We also anal-
yse the benefits of the proposed fine-tuning procedure.

5.1. Results on Tinyface Dataset-(Protocol-1)

The results for Protocol-1 are summarized in Table 1.
From the pre-trained models, we observe that different loss
functions and backbone architectures result in only minor
differences in final performance. We choose the Swin-
B [36] architecture for our experiments due to its ability
to adapt to out-of-domain distributions [29]. We select Ar-
cFace [9] for all our experiments as it shows better per-
formance when coupled with Swin-B. Full fine-tuning of
pre-trained face recognition models does not lead to per-
formance improvement; instead, we observe a performance
decrease from 73.31 to 71.11. Additionally, the perfor-
mance on high-resolution and mixed-quality datasets also
dropped after adaptaion to the low resolution dataset, as
can be seen from Table 1. When a model is fully fine-
tuned for low-resolution face recognition, it is typically pre-
trained on large datasets with millions of identities and then
updated based on low-resolution datasets with only a few
hundred identities. Due to the domain differences between
low-resolution and high-resolution images, the model en-
counters large gradient updates initially, deviating from the
original pre-trained weights suitable for recognition over a
large collection of images. This can lead to poor conver-
gence as can be seen from the full fine-tuning results in Ta-
ble1. These large gradient updates result in catastrophic for-
getting of the pre-trained knowledge, explaining the perfor-
mance drop for high-resolution and mixed-quality datasets.

PETALface addresses the problem of catastrophic for-
getting and achieves rank-retrieval accuracies of 75.72%,
78.86%, and 81.70% for rank-1, rank-5, and rank-10, re-
spectively. It significantly boosts the performance of pre-
trained models while maintaining performance on high-
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BRIAR Protocol 3.1 [8] IJB-S (Surveillance to Surveillance) [26]

TAR@FAR Rank Retrieval TPIR@FPIR Rank Retrieval

0.01% 0.1% 1% Rank-1 Rank-5 Rank-20 1% 10% Rank-1 Rank-5 Rank-10

Pre-trained WBF4M [64] R50 22.55 35.43 52.20 45.43 54.54 65.13 3.67 9.09 33.62 49.40 54.92
Pre-trained WBF4M [64] ViT-B 34.29 47.41 62.81 55.44 64.32 73.46 2.58 8.12 25.76 40.69 47.15
Pre-trained WBF4M [64] Swin-B 33.77 45.93 61.17 55.31 63.29 72.76 2.11 7.45 22.52 37.97 44.93

Full-FT WBF4M [64] Swin-B 11.62 29.68 58.66 44.81 59.88 74.73 1.72 5.95 16.44 31.58 38.65
PETALface WBF4M [64] Swin-B 35.12 55.35 75.43 67.42 76.74 85.20 12.25 25.28 38.32 51.50 57.05

PETALface WBF12M [64] Swin-B 44.29 63.01 81.86 74.49 82.82 90.12 15.28 30.40 42.30 54.33 58.31

Table 2. Results of Protocol 2: The models are fine-tuned on the BRIAR dataset and tested using BRIAR Protocol 3.1 and the IJB-S
dataset. [BLUE] indicates the best results for models trained on WebFace4M [64].

resolution and mixed-quality datasets. We attribute this
improvement to the twin low-rank modules added paral-
lel to the attention weights, which are weighted adaptively
based on input image quality and extract meaningful fea-
tures based on the quality of image. The two low-rank
modules serve as proxy encoders for high-resolution and
low-resolution data, respectively. The adaptive LoRA mod-
ules perform better than static LoRA modules, with a per-
formance increase from 75.64% to 75.72%. Furthermore,
as we fine-tune the model by adding weights parallel to the
model, they still share the common final embedding layer.
This ensures that the feature space for high-resolution and
low-resolution data is aligned. As shown in Table 3, we gain
a further boost in performance by adding a LoRA module
parallel to the final projection MLP. The LoRA module in
the projection MLP layer ensures that the embedding space
stays aligned by adjusting according to the weight updates
of the LoRA modules parallel to the attention layer. Addi-
tionally, the low-rank decomposition keeps the trainable pa-
rameters to a minimum and makes the fine-tuning process
efficient. Finally, we observe that the proposed approach
provides better performance metrics when the pre-training
dataset is scaled from WebFace4M to WebFace12M, with
rank-1 accuracy increasing from 75.72% to 76.66%.

5.2. Results on BRIAR and IJB-S datasets-

(Protocol-2)

With this protocol, we aim to highlight the effectiveness
of the proposed PETALface on datasets that have a clear
domain difference between gallery (high-resolution) and
probe (low-resolution) images. The samples in the Tiny-
Face dataset have similar distributions of gallery and probe
images, with a mean CNN-IQA [27] score of 60.26 and a
standard deviation of approximately 15.44. In contrast, the
BRIAR and IJB-S datasets have samples with CNN-IQA
scores ranging from 20 to 90. This highlights that IJB-S and
BRIAR are more challenging datasets, demanding a better
feature extractor. The results of this protocol are summa-
rized in Table 2. PETALface shows significant improve-

ments in performance on BRIAR, with a FAR of 35.12,
55.35, and 75.43 at TAR of 0.01%, 0.1%, and 1%, respec-
tively. It achieves a rank-1 accuracy of 67.42%, which is
a phenomenal 12.11% improvement. The same trend fol-
lows for rank-5 and rank-20 accuracies, with improvements
of 13.45% and 12.44%, respectively. Again, we see that
full-finetuning does not lead to performance improvements,
as discussed in Section 5.1. The large gradient updates in
the initial iterations lead to poor convergence. However,
PETALface provides significant improvements because of
the separate proxy encoders for high-resolution and low-
resolution images. It provides meaningful discriminative
features for both domains, and the results reiterate the same.

We validate the generalization ability of the proposed
PETALface by evaluating it on the IJB-S dataset. We fine-
tune the models on the BRIAR train set and test them on
IJB-S to gauge the generalization of PETALface. It pro-
vides significant improvements in TPIR and rank-retrieval
accuracies. It achieves a TPIR of 12.25% and 25.28% at
FPIRs of 1% and 10%, respectively. The rank-1, rank-5,
and rank-10 retrieval accuracies are 38.32%, 51.50%, and
57.05%, respectively. We also see improvements in the
Surveillance-to-Single and Surveillance-to-Booking evalua-
tion settings of the IJB-S dataset, whose results are included
in the supplementary document. One common observation
across both datasets is that performance improves as we
scale up the pre-training dataset size.

6. Ablation Studies

We conduct all ablation studies using a Swin-B model
trained on the WebFace4M dataset with CosFace loss. For
these experiments, we used static LoRA modules instead of
the adaptive LoRA model. Effect of applying LoRA to

different layers in the network: We experimented with
adding low-rank decomposition modules at various posi-
tion within the transformer block. [17] proposed adding
LoRA parallel to the attention layers. From our experiments
shown in Table 3, we observe that adding LoRA to the final



Layers
TinyFace [7] Total Model

Params

Trainable

Params
Rank-1 Rank-5 Rank-10

Pretrained 72.74 76.79 79.18 213.67M 213.67M
Full Finetuning 71.32 76.42 79.45 213.67M 213.67M
Attention 75.59 78.83 82.13 214.23 M 730k
Attention + MLP + Proj + Feature 74.89 78.64 81.35 216.24M 2737k
Attention + MLP + Proj + Patch Reduction + Feature 75.16 78.64 81.59 215.96M 2455k
Attention + MLP + Feature 75.21 78.72 81.06 215.96M 2455k
Attention + Feature 75.64 78.86 81.59 214.54M 1041k

Table 3. Performance of Swin-B models when LoRA is added at
different positions in the transformer network.

Rank
TinyFace [7] Total Model

Params

Trainable

Params
Rank-1 Rank-5 Rank-10

2 75.61 79.02 81.73 213.88M 384k
4 75.56 79.05 81.59 214.10M 603k
8 75.64 78.86 81.59 214.54M 1041k

16 75.26 79.15 81.46 215.41M 1918k
32 75.45 78.94 81.81 217.17M 3671k
64 75.05 78.72 81.08 220.67M 7177k
128 75.24 78.70 81.22 227.69M 14.19M

Table 4. Performance of Swin-B models fine-tuned using LoRA
modules of varying ranks.

feature layer along with the attention layer leads to supe-
rior performance. This adjustment in the final feature layers
help align the extracted features based on the updated atten-
tion layers, resulting in better overall performance. More-
over, we don’t see a drastic increase in the number of train-
able parameters, which increased from 730k to 1041k, rep-
resenting only a 0.48% increase of total parameters. Effect

of LoRA rank on performance: We ablate over different
ranks for low-rank decomposition, with the results summa-
rized in Table 4. Our findings indicate that rank-8 yields the
best performance, and thus we adopted this rank for train-
ing all our models. [17] shows that the attention matrix has
an intrinsic low rank, often resulting in better performance
with smaller ranks. This is corroborated by the results in
Table 4, where ranks 2, 4, and 8 outperform ranks 32, 64,
and 128. Effect of different backbones on performance:

We conduct experiments with various backbones to demon-
strate the broad applicability of PETALface. The results,
summarized in Table 5, show that PETALface with the ViT
backbone follows a similar trend, outperforming full fine-
tuning of the models. Effect of Image quality assessment

on performance: We experimented with two lightweight
NR-IQA models: BRISQUE [41] and CNN-IQA [27], and
one face image quality assessment network CR-FIQA [3].
We present the corresponding results in Table 5. The per-
formance on TinyFace when using BRISQUE as the IQA
yielded rank-1, rank-5, and rank-10 retrieval accuracies of
75.16%, 78.46%, and 80.90%, respectively. While CR-
FIQA [3] showed competitive results, its performance was
slightly lower than CNN-IQA, likely because it is trained on
MS1MV2 [9] that doesn’t contain diverse range of degrada-
tion that are present in challenging evaluation datasets like

Training
TinyFace [7]

Rank-1 Rank-5 Rank-10

ViT Backbone with CosFace [51] Loss Function
Pretrained 73.57 76.95 78.94
Full Finetuning 71.08 76.09 79.42
LoRA 73.92 77.11 79.15
PETALface 74.14 77.22 79.56

Ablation using different IQA networks
Pretrained 72.74 76.79 79.18
Full Finetuning 71.32 76.42 79.45
PETALface (BRISQUE) [41] 75.16 78.46 80.90
PETALface (CR-FIQA) [3] 75.34 78.75 81.30
PETALface (CNN-IQA) [27] 75.64 78.86 81.59

Table 5. Results using ViT Backbone and PETALface perfor-
mance using different image quality estimators.

TinyFace, BRIAR and IJB-S. CNN-IQA demonstrated su-
perior performance, leading us to select CNN-IQA as our
IQA for all subsequent experiments. We emphasize that this
boost in performance is due to the robustness of a CNN-IQA
method arising due to its training.

7. Limitation and Future work

As described in section 3, PETALface utilizes an off the
shelf IQA module to model the parameter ↵ defining the
strength of the chosen LoRA module. However, most im-
age quality assessment networks are not accurate. Hence,
research on better IQA models would enable a boost in the
performance of PETALface. Moreover, we define a man-
ually selected heuristic for the choice of parameter ↵ for
choosing the LoRA module. However, one may perform a
more sophisticated heuristic selection by a parameter sweep
over a validation set. We leave these challenges as open
problems to be addressed in future work.

8. Conclusion

In this paper, we propose PETALface, a new method
that harnesses the power of parameter-efficient fine-tuning
to address the challenging problem of low-resolution face
recognition. To achieve this, we introduce a novel im-
age quality assessment based twin LORA module, which
significantly enhances the model’s ability to handle vary-
ing image qualities. By adopting this design choice, we
effectively tackle two major issues prevalent in existing
works: catastrophic forgetting and the domain difference
between gallery and probe images. We conduct extensive
experiments across multiple benchmarks on low-resolution
datasets and achieve state-of-the-art results across various
metrics. Notably, our approach also preserves performance
on high-resolution and mixed-quality datasets. Models fine-
tuned using PETALface demonstrates versatility and can
serve as a generalized model capable of handling a wide
range of image resolutions, making it highly suitable for
real-world deployment and practical applications.
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PETALface: Parameter Efficient Transfer Learning for Low-resolution Face Recognition

Supplementary Document

The supplementary document is organized into the following sections. First, we discuss additional implementation de-
tails. Next, we present the results on other evaluation settings of the IJB-S dataset. Also, we present a gradient analysis of
PETALface and compare it to full fine-tuning to highlight that the proposed approach leads to stable convergence. Finally,
we provide a failure case analysis of PETALface.

A. Implementation Details

All deployment codes were implemented in PyTorch framework and executed it on eight A5000 GPUs, each equipped
with 24GB of memory.The models are trained using the AdamW optimizer and a polynomial learning rate (LR) scheduler,
with an initial learning rate of 5e�4 and a weight decay set to 0.1. We fine-tuned for 40 epochs on TinyFace [1] dataset ,
utilizing a warm-up of 2 epochs and a batch size of 8. For the BRIAR [2] dataset, we fine-tuned for 10 epochs with one
warm-up epoch, also using a batch size of 8. We utilized a low-rank decomposition of 8 for the TinyFace dataset and 32 for
the BRIAR dataset. We employed CNN-IQA [4] as our NR-IQA network to assign weightages to the LoRA modules. We
present the implementation code modules for the adaptive weight estimated and Adaptive LoRA in the below code fragments.
The weightage for the twin LoRA modules is calculated using generate_alpha. The final output is calculated as shown
in adaptive_lora. The complete PETALface training framwork for a single layer is outlined in Algorithm 1.

Algorithm 1 PETALface Training Framework for a single layer

1: Given: Pre-trained weight matrix W0 2 Rm⇥n, LoRA blocks W1 2 Rm⇥n and W2 2 Rm⇥n, Input images X = {xi |
0  i < p}, Image quality estimator �(x)

2: for each dataset do

3: Sample a random l number of samples x1, x2, . . . , xl

4: Calculate the mean µ and standard deviation � of the quality scores:

µ =
1

l

lX

i=1

�(xi), � =

vuut1

l

lX

i=1

(�(xi)� µ)2

5: end for

6: Set the threshold t = µ+ �
7: for each sample xi in X do

8: qi = �(xi)
9: The weightage ↵i is calculated using qi by:

↵i =

8
><

>:

0.5 if qi = t

0.5� (t� qi) if qi < t

0.5 + (qi � t) if qi > t

10: end for

11: We obtain image quality scores Q = {qi | 0  i < p 3 qi = �(xi), 8 0  i < p}
12: The final output xi

out is calculated as:

xi
out = W0(xi) + ↵iW1(xi) + (1� ↵i)W2(xi)



Image quality based weight assignment

1 !pip install pyiqa

2 iqa = pyiqa.create_metric('cnniqa').cuda()

3

4 def generate_alpha(img, iqa, threshold):

5 device = img.device

6 BS, C, H, W = img.shape

7 alpha = torch.zeros((BS, 1), dtype=torch.float32, device=device)

8

9 score = iqa(img)

10 for i in range(BS):

11 if score[i] == threshold:

12 alpha[i] = 0.5

13 elif score[i] < threshold:

14 alpha[i] = 0.5 - (threshold - score[i])

15 else:
16 alpha[i] = 0.5 + (score[i] - threshold)

17 return alpha

Adaptive LoRA

1 class AdaptiveLoRA(nn.Linear):
2 def __init__(self, in_features: int, out_features: int, r: int, scale: int, bias:

bool=True) -> None:,!

3 super().__init__(in_features, out_features, bias)

4 # LoRA 1
5 self.r_1 = r

6 self.scale_1 = scale

7 self.trainable_lora_down_1 = nn.Linear(in_features, self.r_1, bias=False)
8 self.dropout_1 = nn.Dropout(0.1)

9 self.trainable_lora_up_1 = nn.Linear(self.r_1, out_features, bias=False)
10 self.selector_1 = nn.Identity()

11 nn.init.normal_(self.trainable_lora_down_1.weight, std=1/self.r_1)

12 nn.init.zeros_(self.trainable_lora_up_1.weight)

13

14 # LoRA 2
15 self.r_2 = r

16 self.trainable_lora_down_2 = nn.Linear(in_features, self.r_2, bias=False)
17 self.dropout_2 = nn.Dropout(0.1)

18 self.trainable_lora_up_2 = nn.Linear(self.r_2, out_features, bias=False)
19 self.scale_2 = scale

20 self.selector_2 = nn.Identity()

21

22 nn.init.normal_(self.trainable_lora_down_2.weight, std=1/self.r_2)

23 nn.init.zeros_(self.trainable_lora_up_2.weight)

24

25 def forward(self, x, alpha):

26 out = F.linear(x, self.weight, self.bias)

27 lora_adjustment_1 = self.scale_1*self.dropout_1(self.trainable_lora_up_1(

self.selector_1(self.trainable_lora_down_1(x)))),!

28 lora_adjustment_2 = self.scale_2*self.dropout_2(self.trainable_lora_up_2(

self.selector_2(self.trainable_lora_down_2(x)))),!

29 out = out + (1 - alpha)*lora_adjustment_1 + alpha*lora_adjustment_2

30 return out

31



(a) Full fine-tuning (b) PETALface

Figure 1. Comparison of initial gradients when (a) Full fine-tuning a model and using (b) PETALface fine-tuning approach. We can see
that PETALface has small initial gradients which results in stable and gradual convergence. NOTE: The scale of the ’Gradient Values’
axis for Full fine-tuning and PETALface is different.

B. IJB-S Results

Training Dataset Arch.
IJB-S (Surveillance to Single) [3] IJB-S (Surveillance to Booking) [3]

Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10

Pre-trained WBF4M [5] R50 32.01 45.72 51.25 43.82 55.75 61.28
Pre-trained WBF4M [5] Swin-B 33.23 49.85 57.63 46.22 59.40 64.93

Full-FT WBF4M [5] Swin-B 4.20 10.95 16.64 5.39 13.31 19.84
PETALface WBF4M [5] Swin-B 37.12 51.07 57.60 43.63 59.85 66.15

PETALface WBF12M [5] Swin-B 44.40 57.84 63.87 51.09 64.67 70.30

Table 1. Results on IJB-S [3] dataset in Surveillance-to-single and Surveillance-to-booking settings. The models are fine-tuned on the
BRIAR train set. We report the closed-set rank retrieval (Rank-1, Rank-5 and Rank-10). [BLUE] indicates the best results for models
trained on WebFace4M [5].

The results on the IJB-S dataset in the Surveillance-to-single and Surveillance-to-booking settings are shown in Table 1.
In the Surveillance-to-single setting, gallery images are single high-quality images. Similarly, in Surveillance-to-booking,
we have high-quality gallery images from different angles. The probes are of surveillance quality in both settings. This
setup highlights the importance of having two proxy encoders for different resolutions within the same backbone, which are
weighted based on input image quality. PETALface shows improved performance with rank-1, rank-5, and rank-10 retrieval
accuracies of 44.40, 57.84, and 63.87, respectively, in the Surveillance-to-single setting. We see similar improvements in
the Surveillance-to-booking setting for rank-5 and rank-10 accuracies, with increases of 0.45% and 1.22%. The results
demonstrate the generalization capability of the proposed fine-tuning approach. Although the model is fine-tuned on the
BRIAR dataset, the knowledge of low-resolution data gained from that can be translated to other datasets such as IJB-S.
Additionally, we observe a significant drop in performance when we fully fine-tune the model. We discussed the causes
in the main paper and want to reiterate here. Face recognition models are pre-trained on large datasets with high-resolution
images. When fine-tuning on low-resolution datasets, the model encounters a domain difference, which leads to large gradient
updates initially. This deviates the model from the original pre-trained state abruptly, leading to poor convergence. We
provide a gradient analysis in Section D to validate our claims.



C. Gradient Analysis

We analyze the gradients of the model backbone when fully fine-tuning the model versus when using PETALface to fine-
tune the model. We plot the frequency of gradient values for the first iteration of training. As shown in the Figure 1, we see
that when fully fine-tuning the model, the initial gradients are very large, and even after clipping the gradients, there will be
a large number of parameters that will change significantly. This is due to the domain difference between pre-trained and
fine-tuned data, leading to an abrupt deviation from pre-trained weights when fully fine-tuning the model. The initial value
of gradients when using the PETALface fine-tuning approach results in relatively smaller gradients initially, leading to more
stable and gradual convergence and improved performance. Moreover, the original weights remain frozen thereby preserving
all information learned during large scale training. This demonstrates the superiority of our approach in efficiently adapting
to low-resolution data.

D. Failure Case Analysis

Figure 2. Failure Case Analysis of PETALface on the BRIAR dataset. All the subjects are consented for publication.

We conducted a failure case analysis of the probe videos, as summarized in Figure 2, to examine the limitations of our
model. We found that it struggled to recognize faces that were very low in resolution and featured extreme head poses. It
also failed in cases of heavy occlusion, where faces were obscured by items like caps, masks, or sunglasses. Additionally, the
model performed poorly when faces were degraded by atmospheric turbulence, making recognition difficult. Furthermore, the
model failed with probe videos lacking frontal face views, as it could not identify individuals without clear frontal visibility
throughout the video.

References

[1] Zhiyi Cheng, Xiatian Zhu, and Shaogang Gong. Low-resolution face recognition. In Computer Vision–ACCV 2018: 14th Asian
Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part III 14, pages 605–621. Springer,
2019. 1

[2] David Cornett, Joel Brogan, Nell Barber, Deniz Aykac, Seth Baird, Nicholas Burchfield, Carl Dukes, Andrew Duncan, Regina Ferrell,
Jim Goddard, et al. Expanding accurate person recognition to new altitudes and ranges: The briar dataset. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pages 593–602, 2023. 1

[3] Nathan D Kalka, Brianna Maze, James A Duncan, Kevin O’Connor, Stephen Elliott, Kaleb Hebert, Julia Bryan, and Anil K Jain. Ijb–s:
Iarpa janus surveillance video benchmark. In 2018 IEEE 9th international conference on biometrics theory, applications and systems
(BTAS), pages 1–9. IEEE, 2018. 3

[4] Le Kang, Peng Ye, Yi Li, and David Doermann. Convolutional neural networks for no-reference image quality assessment. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1733–1740, 2014. 1

[5] Zheng Zhu, Guan Huang, Jiankang Deng, Yun Ye, Junjie Huang, Xinze Chen, Jiagang Zhu, Tian Yang, Jiwen Lu, Dalong Du, et al.
Webface260m: A benchmark unveiling the power of million-scale deep face recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10492–10502, 2021. 3


