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Abstract

Deepfakes pose a significant threat to the authenticity of digital media, with current1

detection methods often falling short in generalizing to unseen manipulations.2

INFER is the first deepfake detection framework that leverages Implicit Neural3

Representations (INRs), marking a new direction in representation learning for4

forensic analysis. We combine high-level semantic priors from Contrastive Lan-5

guage–Image Pre-training (CLIP) with spatially detailed, frequency-sensitive fea-6

tures from INR-derived heatmaps. While CLIP captures global context grounded in7

natural image statistics, INR heatmaps expose subtle structural inconsistencies often8

overlooked by conventional detectors. Crucially, their fusion transforms the feature9

space in a way that enhances class separability—effectively re-encoding both spa-10

tial artifacts and semantic inconsistencies into a more discriminative representation.11

This complementary integration leads to more robust detection, especially under12

challenging distribution shifts and unseen forgery types. Extensive experiments on13

standard deepfake benchmarks demonstrate that our method outperforms existing14

approaches by a clear margin, highlighting its strong generalization, robustness,15

and practical utility.16

1 Introduction17

With the rapid progress of deep learning, it has become easier than ever to generate highly realistic18

synthetic media, including images, videos, and audio. One of the most widely known and debated19

results of this technology is deepfakes, which is artificial content that is designed to closely mimic20

real-world media. Today, a deepfake is typically defined as any image, video, or audio clip that21

has been generated or modified using deep learning methods, often to deceive viewers or mislead22

them into believing the content is authentic. The term deepfake comes from a combination of deep,23

referring to deep learning, and fake, indicating that the content is not genuine. Although early attempts24

to alter video content go back to the 1990s, such as the Video Rewrite system (1997), which altered a25

person’s lip movements in video to match different audio [43]; these methods did not involve deep26

neural networks. The modern concept of deepfakes only became possible with the rise of powerful27

deep learning models. In particular, Generative Adversarial Networks (GANs) [56, 3] played a major28

role in creating realistic synthetic faces and videos. More recently, diffusion models [13] have made it29

possible to generate even more seamless and photo-realistic content that is difficult to distinguish from30

real media [9, 6]. As deepfake technology becomes increasingly advanced, and widely accessible31

[29], the creation of synthetic media is accelerating at a rapid pace. Recent estimates suggest that32

thousands of deepfakes are now being generated daily, with applications ranging from entertainment33

and satire to more harmful uses such as misinformation campaigns, identity theft, and financial fraud34

[22, 15, 19]. These growing risks have sparked widespread concern around media authenticity and35

digital trust.36
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In response to the growing threat of deepfakes, researchers have turned to the same technology37

that enabled their creation, which is deep learning, to develop effective detection methods. Broadly,38

deepfake detection techniques fall into two main categories: image-based and video-based approaches39

[24]. Image-based methods focus on analyzing individual frames to identify visual artifacts or40

inconsistencies, and are often simpler and faster to train [4, 50, 17]. In contrast, video-based methods41

aim to capture temporal inconsistencies across frames, such as unnatural facial expressions, blinking42

patterns, or head movements, but typically require more complex models and greater computational43

resources [60, 71, 27].44

While a wide range of deepfake detection methods have been proposed, a persistent challenge45

remains: generalization to unseen manipulations and datasets. Many models perform well on specific46

benchmarks but struggle when faced with new deepfake generation techniques or distribution shifts in47

real-world data. This raises a critical question: What types of representations can lead to better class48

separation and more robust detection than traditional approaches? One promising direction involves49

the use of features derived from Contrastive Language–Image Pre-training (CLIP) [47]. Recent50

studies have shown that CLIP features, which encode high-level semantic and visual information,51

offer improved class separability compared to existing methodologies [44]. Building on this, further52

work has demonstrated that applying wavelet decomposition to CLIP-derived features can capture53

localized frequency components, leading to enhanced detection performance [7].54

These insights strongly suggest that combining semantic-rich embeddings with frequency-aware55

representations may offer a promising path toward more generalizable deepfake detection. Motivated56

by this, we seek an alternative representation, that can be combined with CLIP embeddings, which not57

only captures frequency characteristics but also retains spatial context, enabling the model to reason58

about where and how manipulations occur within an image. While many decomposition methods59

exist, we observe that Implicit Neural Representations (INRs) [57] offer a unique formulation.60

They model images as continuous functions over spatial coordinates, implicitly encoding both61

fine-grained structure and frequency content within their network parameters. In doing so, the layer-62

wise activations of INRs naturally act as a form of spectral decomposition [8], revealing localized63

frequency responses across the image. Unlike traditional CNNs that operate on fixed grids, INRs64

provide a flexible and expressive representation that has recently shown promise across various65

signal domains, including images, audio, and video [57, 49, 53]. This makes them particularly66

well-suited for capturing the subtle artifacts introduced by generative manipulations. By leveraging67

the representational power of INRs, we aim to build a more robust and manipulation-sensitive feature68

space that complements high-level semantic cues and improves generalization to unseen deepfake69

types. To the best of our knowledge, this work is the first to explore the use of INRs for deepfake70

detection, leveraging their spatial-frequency sensitivity to identify manipulation artifacts.71

2 Related works72

2.1 Deepfakes73

Deepfake detection has become a widely studied domain due to the rise of powerful generative74

models. Early methods [1, 58, 34] employ a feature encoder followed by a binary classifier to predict75

manipulated content. XceptionNet [12] is based on depthwise separable convolutions with residual76

connections. Similarly, CapsuleNet [41] better captures spatial hierarchies in manipulated media.77

However, these approaches were prone to overfitting and exhibited poor generalization to unseen78

data. The current deepfake detection landscape can be categorized along two major axes: frame-level79

vs. video-level detection methods and spatial domain vs. frequency domain methods. Frame-80

level methods [54, 25, 30] analyze individual frames for manipulation without considering temporal81

consistency. Video-level methods [65, 68, 21] leverage temporal information across frames to enhance82

robustness. When it comes to spatial domain approaches [42, 75], they detect inconsistencies at the83

pixel level. On the other hand, frequency domain approaches [32, 61, 26] focus on spectral artifacts84

introduced during manipulation. Recently, several works such as LSDA [69] and SBI [55] have85

proposed dataset augmentation strategies to increase dataset size with high-quality synthetic samples,86

which has been shown to improve model performance. In contrast, we deliberately avoid using any87

augmentations in order to highlight the efficacy of INRs in implicitly capturing subtle manipulation88

artifacts in spatial-spectral domains. Consequently, for a fair comparison, we exclude baselines that89

employ dataset augmentation. [44] shows the advantage of using semantic CLIP features for deepfake90

detection. Wavelet-CLIP [7] appends it with additional frequency features obtained using wavelet91
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transform to further improve performance. In our approach, we leverage the superior spatial-spectral92

decomposition capability of INRs, combined with the semantic richness of CLIP features. Our work93

falls under the frame-level detection category and utilizes spatial-spectral information derived from94

INRs to improve deepfake detection performance without the aid of data augmentations.95

2.2 Implicit neural representations96

INRs are neural networks that model continuous signals, such as images, audio, or video, by learning97

mappings from input coordinates (e.g., spatial or temporal) to signal values (e.g., RGB intensities98

or waveform amplitudes) [57]. Unlike traditional discrete representations, INRs encode the signal99

directly within network parameters, enabling smooth interpolation, compact storage, and high-100

resolution reconstruction [53]. This continuous formulation makes them especially well-suited for101

capturing fine-grained structure and spectral properties.102

A critical factor in the expressiveness of INRs is their activation functions. Standard activations103

like ReLU, Sigmoid, and Tanh are proven to be inadequate, as they fail to preserve high-frequency104

components of the signal when encoded those to INR. To address this, positional embeddings (PEs)105

were introduced to inject high-frequency information into the input space [63]; however, it has been106

noted that INRs with PE scheme often fail to generalize well for unseen coordinates. Subsequent work107

[57] proposed Sinusoidal activations with carefully chosen weight initialization to directly represent108

high-frequency content. More recent efforts have introduced spatial-spectral compact activations,109

improving generalization while relaxing initialization constraints [49, 53].110

The most prominent application of INRs has been in Neural Radiance Fields (NeRFs) [18], where111

they model 3D scenes as continuous volumetric functions for photorealistic view synthesis. Beyond112

NeRFs, INRs have found use in a wide range of tasks, including image and video super-resolution113

[2], denoising [53, 66, 28], deblurring [31], inpainting [67], and compression of images, videos, and114

3D shapes [59]. INRs have also been applied in medical imaging for reconstruction from sparse115

data [40], audio processing for waveform modeling [57], and hyperspectral imaging [11, 74]. These116

diverse applications highlight the versatility of INRs as a compact and expressive alternative to117

traditional discrete models. Despite this broad adoption, none of these works have explored the use of118

spatial–spectral INR features for deepfake detection. Our work is the first to investigate this direction,119

revealing INR-derived activations as a powerful and discriminative modality for detecting subtle120

manipulations in visual media.121

3 Methodology122

Figure 1: Overview of the INFER Pipeline: INFER begins by associating a spatial coordinate grid
with each input image, which is then overfitted using a carefully designed INR. Internal activations
from each INR layer are extracted and decomposed using PCA to isolate dominant energy directions.
The resulting PCA-based heatmaps are stacked along the batch dimension and processed through a
dedicated Heatmap Encoder. In parallel, the RGB image is passed through a CLIP ViT-L/14 encoder
to obtain a global semantic embedding. Finally, the INR-derived and CLIP-derived features are
concatenated and fed into a classification head for deepfake detection.
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3.1 Dataset preparation123

To build a robust dataset for training and evaluation, we follow a systematic preprocessing pipeline124

comprising frame extraction, face detection, and alignment. We begin by extracting frames from each125

video, followed by face detection using the RetinaFace [16] detector. Detected faces are then cropped126

based on the bounding boxes and aligned using five facial landmark keypoints. The alignment is127

performed via a warp and affine transformation to standardize the facial geometry across samples.128

All faces are resized following this alignment process. INFER is trained on c23 version of the129

FaceForensics++ (FF++) dataset [52], which simulates realistic video compression artifacts.When it130

comes to the number of frames, we extract 10 frames per fake video and 40 frames per real video131

to curate the training set. This sampling strategy ensures a balanced real-to-fake ratio, which helps132

minimize class bias during training. A critical goal in deepfake detection is to ensure generalization133

across unseen forgery types. To assess this, we evaluate the trained model on four out-of-distribution134

(OOD) benchmarks: Celeb-DF v1 (CDFv1) [36], Celeb-DF v2 (CDFv2) [35], FaceShifter (FSh)135

[52], and the Deep Fake Detection (DFD) [52] dataset.136

3.2 Improving deepfake detection via modality fusion137

CLIP embeddings have already shown strong performance in deepfake detection [7] as it excels in138

capturing high-level semantic cues such as identity, expression consistency, and scene realism [5].139

Using a pretrained ViT-L/14 encoder, we extract a global semantic embedding c ∈ R768 by feeding140

in the input image I . These features provide robust scene-wide context; however, they may lack141

explicit spatial and spectral structure.142

Figure 2: t-SNE visualization of feature embeddings from the CDFv1 dataset using different
input modalities: A clear progression in class separability is observed: FFT-based features show
moderate entanglement between real and fake samples, while combining RGB+FFT yields modest
improvement by integrating spatial cues. In contrast, INFER-derived features exhibit well-defined,
compact clusters with a pronounced margin between classes. This suggests that the spatial–spectral
decomposition provided by INR heatmaps restructures the feature space in a way that enhances the
separability making analogies to the effect of a kernel transformation in classical machine learning

To address this limitation, we explored whether fusing CLIP embeddings with additional modalities143

could yield improved separability. Specifically, we combined CLIP features with the RGB image and144

its FFT-based frequency representation [23] to inject complementary spatial or spectral information145

(see Section 4.2 for detailed explanation). However, as seen in both Figure 2 (see the first two146

figures) and Table 2, even though these conventional representations offer some separation in feature147

space, greater class separability can be achieved through a further transformation on the feature148

space. Specifically, the first figure of Figure 2 shows that a degree of separation exists when using149

FFT. However, the second figure further suggests that combining both FFT and RGB transforms150

the feature space in a way that enhances class separation even more. This behavior is also reflected151

in the AUC values reported in Table 2. These observations motivate the idea that modality fusion152

along with CLIP embeddings can improve class separability, but they also raise the question: which153

modality can further transform the data to enhance this separation? This motivates the need for a154

new representation that should ideally include both spatial and spectral features while encoding the155
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required discriminative features. To this end, we explore the possibility of using INRs to derive such156

features in a multiscale and interpretable manner. The following sections demonstrate on how INRs157

can be leveraged alongside CLIP embeddings to improve deepfake detection through enhanced class158

separability.159

3.3 Formulation of an INR160

An INR defines a continuous function that maps spatial coordinates x ∈ R2 to RGB values s(x) ∈ R3.161

This function is typically implemented as a fully connected neural network fθ : R2 → R3, where θ162

represents the learnable parameters. Unlike conventional representations [46] that store an image as a163

discrete grid of pixels, the INR encodes the image in its weights, allowing continuous evaluation at164

any spatial location. Given a 2D spatial coordinate x ∈ Ω ⊂ R2, the network predicts RGB values165

ŝ(x) ∈ R3 through the following layer-wise activations166

h0 = x, hℓ = ϕ(Wℓhℓ−1 + bℓ), ℓ = 1, . . . , L− 1, ŝ(x) = WLhL−1 + bL

where ϕ(·) is a nonlinear activation (e.g., Sinusoid, Gaussian), and Wℓ, bℓ are learnable weights167

and biases respectively. The network is trained to minimize the MSE loss given by Lrecon =168
1
|Ω|

∑
x∈Ω ∥fθ(x)− s(x)∥22, where Ω denotes the set of spatial coordinates in the image domain and169

|Ω| = H ×W , the H and W represent height and width of the image respectively.170

3.4 How can we deploy INRs for deepfake detection?171

3.4.1 Limitations of naïve usage172

A natural and compelling question is how INRs can effectively be leveraged for the task of deepfake173

detection. By design, an INR defines a continuous mapping from spatial coordinates to signal values,174

serving as a compact and differentiable representation of the underlying content [57]. At first glance,175

this architectural structure appears to offer no more than a mechanism for image reconstruction,176

ultimately feeding the reconstructed signal into a downstream classifier. This approach is functionally177

equivalent to using the original image itself and therefore fails to leverage any of the internal178

representations or structural advantages uniquely offered by INRs. A more promising direction is to179

utilize the weights of the trained INR as discriminative features directly [39]. However, this approach180

comes with significant computational overhead. Consider an INR composed of L fully connected181

layers, each with hidden dimension dh. The total number of trainable parameters is approximately182

(d2h+dh)(L−2)+5dh+3, accounting for one input layer, (L−2) hidden layers, and one output layer.183

Empirically, we find that faithful reconstruction of face images with low reconstruction error typically184

requires at least three hidden layers and a hidden width of at least 64 neurons (see Supplementary185

Material), leading to thousands of parameters. Directly feeding these weights into a classifier is186

therefore computationally expensive and potentially impractical for large-scale deployment.187

3.4.2 Spectral bias and representation dynamics188

The challenges noted above motivate the need for more efficient and informative INR representations,189

especially those unique to INRs yet compact and suitable for downstream tasks. One such direction is190

to explore structural patterns or emergent behaviors within the weight space. A key insight from the191

INR literature is spectral bias [48, 72], where lower-frequency components of the signal are learned192

earlier during optimization, while higher frequencies emerge later. Despite its empirical support,193

there is no definitive theory specifying the number of epochs required to learn each frequency band.194

Furthermore, as each image, whether real or manipulated, follows its own optimization trajectory,195

designing a universal schedule or analytical tool to probe weight space remains a challenging open196

problem.197

3.4.3 The pathway of a coordinate through the INR198

This challenge can be approached by analyzing how an individual spatial coordinate propagates199

through the layers of an INR, in conjunction with the known phenomenon of spectral bias. Once200

an INR is trained to reconstruct an image with a minimum L2 error, the image is no longer stored201

directly as pixel values. Instead, it is implicitly encoded in the network parameters θ of a function202

fθ : R2 → R3. As this function takes spatial coordinates x = (x, y) as input and outputs RGB values203
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s(x), it effectively captures both the spatial layout and frequency characteristics of the image through204

the network’s parameters in an implicit manner [51]. For any input location x, the network processes205

it through a series of transformations across L layers, producing a sequence of internal activations206

{hℓ(x)}L−1
ℓ=1 . This trajectory can be viewed as a coordinate-conditioned representation path, which207

describes how the INR internally responds to that specific point. Each transformation can be written208

as hℓ = Tℓ(hℓ−1), where Tℓ denotes the learned mapping at layer ℓ that incrementally refines the209

previous layer’s representation until the final output recovers the original signal.210

This layered refinement process is reminiscent of classical signal decomposition methods, such211

as wavelet transforms [73] or multiresolution pyramids [20], which also emphasize hierarchical212

encoding. However, unlike handcrafted bases that isolate spatial or frequency information, INRs213

inherently couple both due to their continuous, coordinate-based formulation. As a consequence, the214

early layers tend to capture coarse, global features (typically corresponding to low frequencies), while215

the deeper layers progressively encode finer, localized variations (high frequencies). This behavior216

closely resembles with with the notion of spectral bias in neural networks.217

3.4.4 Extracting interpretable features from INR layers.218

We begin by examining the internal activations hℓ(x) ∈ Rdℓ at each layer ℓ ∈ {1, . . . , L− 1} and219

spatial coordinate x ∈ Ω ⊂ R2. These activations form tensors of size H ×W × dℓ. While these220

feature maps encode rich information, they are high-dimensional, difficult to interpret, and infeasible221

to directly use in downstream classification due to memory constraints.222

To obtain a compact yet informative representation, we seek a transformation that reduces each223

activation vector to a scalar, while preserving the most structurally meaningful content for deepfake224

detection. From a signal processing perspective, this corresponds to emphasizing high-energy225

components—regions where the network’s response is most active and discriminative. As an initial226

step, we explored the L2 norm of the activation vectors. Although smooth and easy to compute, these227

maps were often dominated by magnitude rather than structure, leading to limited interpretability and228

poor spatial localization (See Supplementary material).229

To address this, we adopt a simple, non-learnable alternative that extracts the dominant energy230

component of each layer’s response. Specifically, we use Principal Component Analysis (PCA) to231

identify the most expressive direction in the activation space. Projecting each feature vector hℓ(x)232

onto this direction yields a scalar heatmap that summarizes the layer’s internal representation at each233

location. The sequence of PCA-derived scalar maps {Aℓ(x)}L−1
ℓ=1 forms a structured representation234

that captures how an INR distributes signal content across layers. We interpret this set as an235

approximate multiscale decomposition: I(x, y) 7→ a(x, y) := [A1(x, y), . . . , AL−1(x, y)] ∈ RL−1.236

3.4.5 Discriminative nature of the multiscale decomposition237

Figure 3 presents two examples from the CDFv2 dataset: the top row corresponds to a real image,238

and the bottom row to a deepfake. Each row visualizes the spatial–spectral multiscale decomposition239

obtained from the INR’s internal activations across layers. The final column shows the image240

reconstructed by the INR, which appears visually similar in both cases despite notable differences in241

their internal representations. While the quantitative results demonstrate that INFER significantly242

improves deepfake detection across datasets (See Section 4), the proposed decomposition also reveals243

subtle structural discrepancies, particularly mid-to-deep layers—that are not easily observable in the244

RGB image or FFT maps. These visual differences provide a glimpse into the discriminative nature245

of INR-derived representations, though additional non-visible cues encoded in the internal activations246

may also contribute to the classifier’s decision-making process.247

In Layer 1, both real and fake activations exhibit wave-like patterns with visually high-frequency248

textures, which may arise due to the deployed sinusoidal activation function in the INR. Despite their249

appearance, these early activations primarily capture low-level spatial variations and lack semantic250

distinction, making them visually similar across real and fake images.251

By Layer 2, the activations begin to reflect mid-level facial structure. For the real image (top),252

the representation becomes more coherent where it highlights eyes, nose, and mouth regions with253

smoother transitions. In contrast, the fake image (bottom) shows irregular, noisy responses lacking254

semantic consistency. This instability suggests the INR struggles to encode manipulated features255

cleanly at mid-to-deep levels.256
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Figure 3: Despite producing visually faithful reconstructions for both real and fake images (last
column), the INR exhibits markedly different internal dynamics across layers: This visualization
underscores a key insight about implicit representations: models can reproduce perceptually accurate
outputs while encoding fundamentally different internal pathways. By projecting layer activations via
PCA, we expose these hidden trajectories—revealing that while the output may conceal manipulation,
the network’s internal structure does not.

In Layer 3, the differences become more pronounced. The real image produces well-aligned,257

semantically interpretable activations that faithfully reconstruct identity features, whereas the fake258

image exhibits distorted contours and exaggerated edge responses—visual evidence of manipulation259

artifacts that become amplified through the INR’s encoding process.260

Even though the final INR reconstructions (rightmost column) appear visually similar, the internal261

activations reveal a clear distinction in representation quality.262

3.5 Fusing semantic and multiscale representations263

To extract robust and discriminative features from the PCA-projected INR heatmaps, we design264

a compact convolutional encoder tailored to the spatial–spectral nature of these representations.265

INR-derived heatmaps encode multiscale structural information across layers but can also exhibit266

smooth gradients and locally diffuse patterns due to the continuity and frequency sensitivity inherent267

in the INR formulation. Capturing useful cues from such signals requires an architecture that is both268

spatially aware and resistant to low-frequency redundancy.269

We employ stacked 3× 3 convolutional layers to effectively capture local spatial correlations while270

preserving translational structure. Each convolution is followed by Batch Normalization to stabilize271

learning and reduce internal covariate shift, and a GELU activation to introduce smooth, non-linear272

transformations that preserve gradient flow while enhancing expressive capacity. To reduce spatial273

resolution while retaining global context, we apply an AdaptiveAvgPool2d operation that maps274

the feature maps to a fixed 4 × 4 resolution, independent of the input size. This is followed by a275

fully connected projection and Layer Normalization to produce a compact, fixed-dimensional feature276

embedding.277

The heatmap encoder serves as an effective counterpart to the CLIP encoder by transforming localized278

INR-derived activations into a structured, learnable form. The final CLIP feature and heatmap encoder279

output are concatenated and passed through a classifier head composed of three fully connected layers280

with a hidden dimension of 256. This classification module is trained end-to-end using cross-entropy281

loss to discriminate between real and fake inputs. A visual summary of the entire INFER pipeline is282

shown in Figure 1.283
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4 Experiments284

4.1 Experimental setup285

To validate the effectiveness of INFER, we conduct extensive experiments across multiple deepfake286

datasets. The training set consists of videos generated using four popular face manipulation tech-287

niques: Deepfakes, Face2Face, FaceSwap, and NeuralTextures. These methods span a range of288

manipulation styles, providing a diverse training distribution. The utilized evaluation datasets, which289

are already discussed in Section 3.1, are distinct from the training data in both manipulation technique290

and visual domain, allowing us to rigorously test the generalizability of the learned modules. The291

performance of the proposed method is measured using the Area Under the Curve (AUC) metric.292

Further, all the reported values for state-of-the-art (SOTA) methods are either obtained from their293

respective papers or from [7].294

Table 1 summarizes the performance of the proposed INFER compared to existing SOTA methods295

across four widely-used OOD deepfake detection benchmarks (“–” indicates results not reported296

in prior works). As evident from the results, INFER consistently achieves superior AUC scores,297

demonstrating strong generalization capability even under distribution shift. For the Celeb-DF family298

of datasets, CDFv1 and CDFv2, INFER attains AUC scores of 0.863 and 0.819, respectively. On299

CDFv1, it outperforms the best prior method, SRM (0.792), by a relative margin of 8.22%. On CDFv2,300

it surpasses the best-performing CLIP-based method, which is Wavelet-CLIP (0.759), by 7.32%.301

Notably, when compared against plain CLIP (0.743), the improvement is over 9.28%, validating the302

complementary nature of the INR-derived modality. On the FSh dataset, INFER achieves an AUC of303

0.747, outperforming Wavelet-CLIP (0.732) by a relative margin of 2.00%. For the DFD dataset, both304

the F-G method and the proposed INFER achieve the same AUC score. It can be stated that, INFER305

delivers consistently strong performance across all benchmarks without requiring dataset-specific306

tuning or modality customization.307

Model Venue CDFv1 CDFv2 FSh DFD Avg.
General SOTA Methods

MesoNet [1] WIFS-18 0.735 0.609 0.566 0.548 0.615
MesoInception [1] WIFS-18 0.736 0.696 0.643 0.607 0.671
EfficientNet [62] ICML-19 0.790 0.748 0.616 0.815 0.742
Xception [12] ICCV-19 0.779 0.736 0.624 0.816 0.739
Capsule [41] ICASSP-19 0.790 0.747 0.646 0.684 0.717
DSP-FWA [34] CVPR-19 0.789 0.668 0.555 0.740 0.688
CNN-Aug [64] CVPR-20 0.742 0.702 0.598 0.646 0.672
FaceX-ray [33] CVPR-20 0.709 0.678 0.655 0.766 0.702
FFD [14] CVPR-20 0.784 0.744 0.605 0.802 0.734
F3-Net [45] ECCV-20 0.776 0.735 0.591 0.798 0.725
SRM [38] CVPR-21 0.792 0.755 0.601 0.812 0.740
CORE [42] CVPR-22 0.779 0.743 0.603 0.802 0.732
RECCE [10] CVPR-22 0.767 0.731 0.609 0.812 0.730
UCF [70] ICCV-23 0.779 0.752 0.646 0.807 0.746
F-G [37] CVPR-24 0.744 – – 0.848 0.796

CLIP-Based Methods

CLIP [44] CVPR-23 0.743 0.750 0.730 – 0.741
Wavelet-CLIP [7] WACV-25 0.756 0.759 0.732 – 0.749
INFER (Ours) – 0.863 0.819 0.747 0.848 0.819

Table 1: AUC performance across cross-dataset evaluations. The top section lists general SOTA
methods, while the bottom focuses on CLIP-based approaches, including the proposed INFER.

4.2 Ablation studies308

An ablation study was conducted to evaluate which modality provides the most discriminative infor-309

mation when combined with CLIP embeddings for the task of deepfake detection. The comparison310
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includes the standard CLIP module, as well as additional fusion configurations as described below. In311

the setting labeled FFT, the Fourier transform of the input image is processed through a shallow CNN312

and its embeddings are concatenated with CLIP features. In the RGB+FFT configuration, both RGB313

and FFT representations are passed through separate shallow CNNs, and their respective embeddings314

are fused with CLIP embeddings.315

Method CDFv1 CDFv2 Avg.

CLIP [44] 0.743 0.750 0.7465
FFT 0.759 0.760 0.7595
RGB+FFT 0.786 0.794 0.7900

INFER 0.863 0.819 0.8410

Table 2: AUC scores and average perfor-
mance across CDF datasets. Figure 4: ROC curves for CDFv1 and CDFv2

As can be seen from Table 2, adding FFT features to CLIP embeddings yields a noticeable perfor-316

mance gain, improving the average AUC from 0.7465 to 0.7595 (+1.71%), and this performance gain317

is closer to Wavelet CLIP. Incorporating both RGB and FFT features further improves performance to318

0.7900 (+5.50% over CLIP), confirming that spatial and spectral cues complement CLIP’s semantic319

information. However, our INR-based method (INFER) significantly outperforms all other variants,320

achieving an average AUC of 0.8410. This represents a +6.06% gain over RGB+FFT, and a +11.24%321

improvement over CLIP alone. The corresponding ROC curves for these ablations are provided in322

Figure 4. These results highlight the strong discriminative power of INR-derived features, which323

provide a unified spatial–spectral representation that is more expressive than separately extracted324

RGB or FFT features, even though those are derived directly from the same RGB image. By revealing325

subtle manipulation artifacts often missed in both spatial and frequency domains, the INR heatmaps326

supply crucial cues that underpin the performance gains of our approach.327

5 Configurations and additional plots328

The supplementary materials include detailed explanations of the network configurations used in329

the INR framework. These cover the selection of activation functions, the reasoning behind specific330

choices for network depth and the number of hidden neurons, as well as an analysis of why PCA331

provides better feature representations than L2 norm-based maps. Moreover, additional visualizations332

are provided that demonstrate the INR’s ability to capture multiscale structural information through333

its hierarchical decomposition. These materials offer further insight into the design choices and334

effectiveness of the proposed method.335

6 Conclusion336

In this work, we propose INFER, a deepfake detection framework that synergistically combines337

semantic embeddings from CLIP with spatial–spectral cues extracted from Implicit Neural Represen-338

tations (INRs). Unlike traditional approaches that rely solely on either pixel or frequency-domain339

features, our method leverages INR-derived heatmaps, which capture multiscale structural patterns340

through a learned continuous implicit function. These heatmaps expose subtle inconsistencies often341

overlooked by CLIP and conventional CNN-based features. Through extensive experiments across342

standard deepfake detection benchmarks, we show that INR features significantly boost performance343

when fused with CLIP embeddings. Compared to standalone CLIP models, INFER achieves an aver-344

age AUC improvement of +11.24%, and outperforms other CLIP-based variants such as RGB+FFT345

by +6.06%. These results underscore the complementary nature of INR-derived representations,346

which offer a richer and more discriminative feature space for detecting manipulated content. Our347

findings not only demonstrate the efficacy of INR-guided feature decomposition for deepfake de-348

tection but also open up new opportunities for applying INRs to other forensic tasks where subtle349

structural cues are critical. We believe this work lays the foundation for further exploration of implicit350

representations as a powerful modality in real-world multimedia integrity verification.351
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A Supplementary Material561

A.1 Choosing the Most Effective Activation Function562

As discussed in the main text, the core of an INR lies in its activation function. An inappropriate or563

conventional activation can often lead to degraded performance in image representation tasks. To564

assess the most effective activation function, we randomly sampled 100 real and 100 fake images from565

the FaceForensics++ dataset, following the preprocessing steps outlined in Section 3.1. INRs were566

then trained using sinusoidal activations from SIREN [57], as well as those introduced in Gauss [49]567

and WIRE [53].568

The table below summarizes the average Peak Signal-to-Noise Ratio (PSNR, in dB) obtained for both569

real and fake images across the different activation types:570

Activation Function PSNR (Real) PSNR (Fake)

SIREN 37.41 38.18
Gauss 29.41 29.71
WIRE 20.01 19.73

Table 3: Average PSNR values for real and fake images across different activation functions.

As shown in Table 3, the SIREN model with sinusoidal activation significantly outperforms both571

Gauss and WIRE across real and fake image reconstructions. Due to its superior performance, SIREN572

was adopted as the default activation function for all INR-based experiments in this work.573

A.2 Choosing the Number of Hidden Neurons574

Another important design choice in INRs is the number of hidden neurons in each layer. Increasing575

this number generally enhances the network’s representation capacity, enabling it to capture more576

complex structures and finer details. However, beyond a certain point, increasing the hidden neuron577

count may no longer lead to meaningful improvements in reconstruction quality. Specifically, the578

PSNR often plateaus once the network has reached its capacity to represent the target signal, indicating579

diminishing returns with further increases in model size. It is worth noting that this behavior can also580

depend on the type of activation function used.581

Similar to the procedure described in Appendix A.1, we randomly sampled 100 real and 100 fake582

images from the FaceForensics++ dataset and varied the hidden neuron count from 32 to 160 in583

increments of 32 while keeping the number of hidden layers as two. The resulting average PSNR584

values for both real and fake images are presented in the left side of Fig. 5.585

A.3 Choosing the Number of Hidden Layers586

In addition to the number of hidden neurons, the depth of the network, defined by the number of587

hidden layers, is another key factor that influences the expressiveness of INRs. Deeper networks are588

generally capable of modeling more intricate patterns and hierarchical structures, potentially leading589

to better reconstruction quality. However, similar to increasing the number of neurons, increasing590

the number of hidden layers may also yield no further improvements in reconstruction quality. This591

phenomenon can be attributed to the combined effects of the activation function and other network592

parameters.593

To analyze the impact of network depth, we varied the number of hidden layers from 1 to 3 while594

keeping the number of hidden neuron count as 128. Following the same evaluation protocol as before,595

we randomly sampled 100 real and 100 fake images from the FaceForensics++ dataset and trained596

INRs under each configuration. The average PSNR values obtained for both real and fake images are597

summarized in the right side of Fig. 5.598
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Figure 5: Average PSNR Variation for both Real and Fake Samples: Left side plot shows how
the average PSNR varies with hidden neuron count while the Right side plot shows how the average
PSNR varies with the number of hidden layers

A.4 Utilized INR599

For the image reconstruction task through INR, our objective is to achieve at least 35 dB PSNR, as600

this level reflects high signal fidelity and indicates that the INR has effectively captured the essential601

structural content of the image. Such a threshold helps ensure that the reconstruction is stable602

and reliable for downstream analysis, including feature extraction and classification. At the same603

time, we aimed to avoid overly complex networks with a large number of trainable parameters. To604

balance reconstruction quality and model efficiency, we selected an INR architecture with sinusoidal605

activation [57], consisting of 128 hidden neurons and 2 hidden layers.606

A.5 INR reconstructions607

In addition to proving the quantitative results for INR reconstruction, Figure 6, and Figure 7 showcase608

how the INR reconstruction quality looks for six different real and fake samples respectively.609

Figure 6: Original Images and INR Reconstructions for Real Samples: This figure presents
side-by-side comparisons of original real images and their corresponding reconstructions produced
by INRs.
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Figure 7: Original Images and INR Reconstructions for Fake Samples: Side-by-side comparisons
of original fake images and their corresponding INR reconstructions.

A.6 Heatmap Analysis for Different Datasets610

In addition to the heatmap visualizations from the CDFv2 dataset in the main text, we also present611

INR-derived heatmaps for CDFv1, DFD, and FSh. These additional visualizations further highlight612

the ability of INRs to capture structural inconsistencies across different manipulation methods and613

datasets.614

A.6.1 CDFv1615

Figure 8: INR Feature Heatmap Progression for Real and Fake Images (CDFv1)

As can be seen from Figure 8, the first row corresponds to a real image, while the second row shows616

a deepfake. In the real image, the INR learns progressively meaningful representations: the first layer617

captures periodic frequency patterns, the second begins to reveal coarse facial structure, and the third618

17



cleanly delineates key semantic features such as eyes, nose, and mouth with sharp transitions and619

spatial coherence. This reflects a natural multiscale decomposition that can be commonly observed in620

INRs trained on natural content. In contrast, the heatmaps from the deepfake image reveal subtle621

inconsistencies. While the initial layer shows strong frequency bands, the second and third layers622

display noisier, less structured activations, particularly in regions like the cheek and jawline. Notably,623

the third-layer features lack the same spatial sharpness and exhibit localized overactivation near624

synthetic textures (e.g., the forehead accessory). These differences highlight how INR activations625

implicitly encode artifacts introduced by manipulation, supporting their utility in forensic analysis.626

A.6.2 DFD627

Figure 9: INR Feature Heatmap Progression for Real and Fake Images (DFD)

As can be seen from Figure 9, in the real sample (top row), the network exhibits a natural decomposi-628

tion: the first layer encodes smooth, low-frequency gradients, while subsequent layers progressively629

extract spatial structure aligned with facial semantics. By the third layer, the representation distinctly630

highlights the subject’s facial features and background texture in a spatially coherent manner. On631

the other hand, the fake sample reveals signatures of overactivation and structural inconsistency. As632

the depth increases, the heatmaps become increasingly noisy, with attention distributed unevenly633

across irrelevant regions such as the background or accessories (e.g., hat, hair). The third layer lacks634

the focused delineation observed in the real case, underscoring the INR’s struggle to generalize to635

synthetic artifacts. These observations highlight the discriminative potential of INR-derived features636

in distinguishing real from fake content.637

A.6.3 FSh638

As can be seen from Figure 10, in the real image (top row), the network exhibits a natural and639

structured activation flow. The first layer encodes smooth, diagonal sinusoidal frequencies. By the640

second layer, coherent facial structures begin to emerge. In the third layer, semantic features such641

as the eyes, mouth, and hairline become sharply defined, with strong localization and contrast —642

indicating confident learning of meaningful spatial content. In contrast, for the fake image, the deep643

layers tend to be spatially noisy and less well-formed activations in layers 2 and 3. Although the644

overall face layout is still present, the details are less distinct. Key features like the mouth and eyes645

appear blurred or over-smoothed, and the network spreads attention more uniformly, suggesting646

difficulty in modeling fine-grained semantics. These differences align with patterns observed across647

fake content, where subtle inconsistencies in structure and texture impede robust INR representation648

learning. This highlights the sensitivity of INR-derived heatmaps to manipulation artifacts.649
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Figure 10: INR Feature Heatmap Progression for Real and Fake Images (FSh)

A.7 Feature Space Analysis650

Figure 11: t-SNE visualization of feature embeddings from the CDFv2 dataset using different
input modalities

To better understand how different feature combinations affect the structure of the learned representa-651

tion space, we visualize the embeddings of real and fake samples using t-SNE for three configurations652

as shown in Figure 11. Each configuration involves concatenating the respective features before653

classification. These plots reveal how the choice of representation transforms the feature space and654

impacts class separability.655

FFT Only (Left): This configuration concatenates global frequency information (via the FFT656

magnitude spectrum) with CLIP embeddings. The FFT captures the global energy distribution across657

frequencies, but discards all spatial localization. While this can detect abnormal high-frequency658

content typical of manipulations, it cannot tell where these signals occur which is a critical limitation659

for identifying local artifacts. As many fake traces are spatially sparse or structured (e.g., boundary660

mismatches or warped facial regions), this global representation leads to significant overlap between661

real and fake distributions in the t-SNE space. Moreover, FFT is phase-agnostic in this setup, meaning662

structural information embedded in phase is ignored. CLIP contributes semantic context but lacks663

pixel-level sensitivity. As a result, the combined representation fails to disentangle class boundaries664

effectively.665

RGB + FFT (Middle): Here, raw image pixels, FFT features, and CLIP embeddings are concatenated.666

While this introduces spatial information through RGB and captures frequency cues through FFT,667
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the representation is not explicitly organized to reflect multi-scale spatial-frequency patterns. Even668

though FFT complements this with frequency statistics, it still lacks localization. Consequently, the669

feature space becomes more structured than the FFT-only case, but real and fake samples still exhibit670

considerable intermixing, suggesting insufficient separation.671

INFER (Right): The proposed INFER, where INR-derived heatmaps are concatenated with CLIP672

embeddings, results in the most well-separated clusters. INRs reconstruct images from continuous673

coordinates, and the resulting heatmaps capture how different spatial positions activate the network.674

These activations inherently encode localized frequency responses, much like a learned multiscale675

basis decomposition. From a signal processing perspective, INRs offer a unique advantage: they676

disentangle an image’s representation into a hierarchy of frequencies conditioned on position. This677

means they capture both what frequencies are present and where, which is similar to a spatially678

adaptive filter bank. Fake images, which often contain unnatural local discontinuities, exhibit distinct679

activation behaviors in these heatmaps compared to real images. When concatenated with CLIP,680

which provides semantic structure, the combined representation becomes highly expressive: local681

inconsistencies are aligned with global semantics, resulting in a well-structured, and a more separable682

space. This is visually evident from the transformation that both real and fake clusters have undergone683

compared to Left and Middle figures.684

A.8 Grad-CAM Analysis685

Real Fake

Figure 12: Activation Maps for Real and Fake Images

The Grad-CAM visualizations reveal distinct attention patterns for real and fake images, highlighting686

the complementary roles of semantic and structural cues in INFER, as shown in Figure 12. For real687

faces, the heatmaps are diffuse, with activations spilling into the background and being distributed688

across broad facial regions rather than tightly clustering around specific landmarks. This suggests689

that, in the absence of obvious distortions, the detector relies on the overall consistency of textures,690

both in the background and on the face, rather than on narrowly defined semantic features. In contrast,691

when processing deepfake images, the attention drifts outward toward peripheral zones such as the692

hairline boundaries and jawline contours, as well as toward landmark regions like the eyes, nose,693

and mouth. These are precisely the areas where synthesis artifacts commonly appear, including694

blending errors, texture irregularities, and subtle warping. This shift in attention arises from INFER’s695

integration of INR-derived features: by overfitting a sinusoidally activated INR to each input and696

extracting multiscale activation heatmaps via PCA, INFER captures fine-grained frequency-domain697

distortions that standard CNN backbones and CLIP embeddings often overlook. When these INR698

heatmaps are concatenated with CLIP’s semantic embeddings, the downstream classifier learns to699

look where the fakes break, prompting Grad-CAM to highlight artifact-rich regions in fake images.700

Consequently, INFER enhances robustness by guiding the detector to attend not only to plausible701

facial geometry but also to the subtle structural inconsistencies that are characteristic of deepfakes.702
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