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Abstract

Low-resolution face recognition (LR-FR) remains a challenging task due to poor
feature extraction and aggregation, as probe images often contain limited iden-
tity information resulting from extreme degradations such as blur, occlusion, and
low contrast. Additionally, the domain gap between high-resolution (HR) gallery
images and low-resolution (LR) probe images poses a significant challenge. A
single feature encoder struggles to generalize effectively across both domains when
fine-tuned on an LR dataset, and this issue is further magnified by catastrophic
forgetting. To address these challenges, we propose FaceMoE, a novel transformer-
based architecture enhanced with a Mixture of Experts (MoE) design. Specifically,
we introduce multiple specialized feed-forward network (FFN) experts and incor-
porate a top-k router, which dynamically assigns tokens to appropriate experts.
This design promotes specialization across experts for different semantic regions of
the face, which enables FaceMoE to perform resolution-aware feature extraction.
Moreover, the top-k router facilitates sparse expert activation, enabling the model
to preserve pretrained knowledge when finetuned on a LR dataset, while increasing
model capacity without proportional computational overhead. FaceMoE is trained
with a combined face recognition loss, router z-loss, and load balancing loss to
ensure expert specialization and stable training. To the best of our knowledge, this
is the first work leveraging MoE for LR-FR. Extensive experiments across eleven
datasets, spanning HR, mixed-quality, and LR benchmarks, demonstrate that Face-
MoE significantly outperforms state-of-the-art methods, excelling in low-resolution
face recognition. Code and models will be made public.

1 Introduction

Face recognition is one of the foundational tasks in computer vision and biometrics, involving the
recognition and verification of individuals from images or videos. It plays a vital role in real-world
applications such as authentication [1], banking [2], and border control [3]. Recently, there has
been a growing focus on low-resolution face recognition (LR-FR) [4, 5, 6], due to its widespread
applicability in surveillance [7]. However, this task is particularly challenging because the input
images or videos are often of surveillance quality and severely degraded by factors such as atmospheric
turbulence, occlusion, overexposure, and motion blur. These degradations significantly reduce
the discriminative features necessary for reliable identification, making conventional recognition
techniques less effective. Additionally, variations in pose, illumination, and expression become more
pronounced and harder to manage in low-resolution settings, often resulting in poor generalization
and reduced performance. Therefore, LR-FR remains a challenging yet crucial problem to address.

To improve the effectiveness of low-resolution face-recognition, it is essential to address several key
challenges: Challenge 1 - Effective face feature aggregation: Probe videos in low-resolution datasets
often suffer from significant degradation, which makes face feature aggregation particularly difficult.
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Figure 1: (a) BRIAR gallery and probe. (b) Domain difference between gallery and probe. (c)
Activation maps corresponding to LR and HR images. (d) SOTA results on BRIAR Protocol 3.1.

Since only a limited subset of frames typically contains discriminative identity information, effective
feature extraction, followed by aggregation is crucial to build robust face templates. Challenge 2 -
HR gallery and LR probe domain difference: In LR-FR, gallery images are typically high-resolution
(HR), while probe images are low-resolution (LR) and come from distinct domains, as validated
in Figures 1(a) and 1(b). Models tend to rely on different semantic regions depending on the input
resolution to achieve accurate recognition. For HR images, they focus on skin texture, landmarks
regions and other fine details that provide sufficient identity information. In contrast, for LR inputs,
the face region can be severely degraded to extract any identity information. In such cases, the focus
shifts towards broader shapes and coarse facial structures. These resolution-dependent patterns are
clearly illustrated by the activation maps in Figure 1(c). This gallery and probe domain gap poses a
significant challenge for effective feature extraction. Challenge 3 - Catastrophic forgetting when
adapting to LR dataset: LR-FR models are generally trained in two stages: large-scale pretraining on
HR datasets, followed by finetuning on the target LR domain. The second-stage adaptation process
makes the model prone to catastrophic forgetting, due to unstable gradient updates in the initial
epochs of finetuning [8], caused by the significant domain difference between HR and LR datasets.
As a result, the model not only loses its pretrained performance but also fails to effectively adapt to
the low-resolution data. We validate this effect empirically and show the resulting performance drop
in Figure 3 (Finetuning (CosFace)) and Figure 4 (Finetuned CosFace).

Existing works aimed at improving low-resolution face recognition, such as CAFace [9], CoNAN [6],
and ProxyFusion [10], focus on addressing Challenge 1 by selecting relevant frames for fusion after
the feature extraction. Specifically, CAFace [9] utilizes an intermediate style map; CoNAN [6] learns
a context vector conditioned on distributional information to weigh features based on their estimated
informativeness; and ProxyFusion [10] employs learnable queries to identify the most relevant frames.
However, the effectiveness of these methods is constrained by the quality of the trained feature
encoders, which ultimately limits their overall performance. In contrast, PETALface [11] introduces
quality-adaptive dual low-rank modules aimed at developing a more generalized feature encoder
across both high-resolution and low-resolution domains, thereby catering to all the key challenges in
low-resolution face recognition. Nevertheless, its performance on the low-resolution domain remains
subpar compared to the other state-of-the-art methods.

To address the aforementioned challenges, we propose FaceMoE, a novel framework designed to
tackle the core issues in LR-FR. We introduce an architectural modification to the transformer block
by incorporating a mixture of feed-forward network (FFN) experts in place of the standard single FFN.
Existing transformer-based face recognition encoders typically employ a single FFN following the
self-attention operation. However, we argue that a single FFN is insufficient for the complex task of
low-resolution face recognition, as it struggles to effectively handle both the HR gallery and LR probe
domains. Moreover, it lacks the resolution-aware feature extraction necessary for robust identity
representation. Our modified transformer block addresses these limitations by using multiple FFN
experts and a top-k router that directs each input patch to a subset of k out of n experts based on the
input resolution. This design enables different FFN experts to specialize in distinct facial regions, with
the top-k router dynamically assigning the subset of experts based on resolution, thereby achieving
resolution-aware feature extraction. This enables the model to extract strong identity representations
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by routing input tokens from regions that retain identity cues in degraded images to specialized experts
tailored to those regions. This improves feature extraction from LR probes and enhances overall
face feature aggregation. Furthermore, the presence of multiple FFN experts facilitates effective
adaptation to LR datasets with a minimal drop in pretrained performance. This is achieved through
the modular and sparsely activated nature of MoE, which restricts weight updates to only a subset of
experts during fine-tuning, thereby reducing catastrophic forgetting [12]. The modular design allows
experts to function as semi-independent blocks; during fine-tuning, this structure induces selective
drift [13], with some experts adapting to LR data while others retain their pretrained knowledge.
This retained knowledge enables the model to perform effective feature extraction for both the HR
gallery and LR probe domains, further enhanced by its resolution-aware feature extraction capabilities.
FaceMoE is trained using a combination of router z-loss and load-balancing loss, which promotes
both expert specialization and balanced utilization, thereby preventing training collapse. The top-k
routing ensures sparse expert utilization, with a increase in model capacity without a proportional
rise in computational cost achieving 2.17× more capacity with only 1.66× more FLOPs.

To summarize our contributions are as follows:

1. We propose FaceMoE, a modified transformer encoder with sparsely activated FFN experts.
It enables efficient adaptation to low-resolution datasets while minimizing catastrophic
forgetting, effectively addressing the domain gap between gallery and probe images.

2. We introduce a top-k router that assigns each input token to a subset of FFN experts, each
specializing in distinct semantic facial regions. This enables resolution-aware feature
extraction. The router directs tokens containing discriminative identity cues to the most
relevant experts, thereby enhancing feature representation and improve LR-FR performance.

3. We demonstrate the effectiveness of FaceMoE by outperforming state-of-the-art models
on low-resolution face recognition (see Figure 1(c)). We showcase its capabilities through
evaluations on eleven datasets, covering HR, mixed-quality, and LR scenarios.

2 Related Work

Low Resolution Face-Recognition. Face recognition research has largely focused on developing
variants of margin-based loss functions [14, 15, 16, 17, 18, 19] to improve the performance on high-
resolution benchmarks [4, 7, 20]. In contrast, much less attention has been given to low-resolution
unconstrained face recognition (LR-FR) datasets [4, 7, 20], which contain heavily degraded face
images that are unidentifiable by humans. Efforts to improve LR-FR can be broadly categorized
into four areas based on their focus: data, training methodology, feature fusion, and architectural
design. Early works [21, 22] used super-resolution (SR) models to restore images prior to recognition,
but later works [23, 24, 25] suggest that this approach can cause identity hallucination. Many
studies [26, 27, 28, 29] relate recognition to visual quality. However, this is infeasible as it requires
paired HR and LR images of the same subject, which are mostly unavailable in LR datasets. [30, 31]
introduce augmentations to mitigate the performance gap between HR and LR samples. In terms of
training methods, some works [32, 33] use knowledge distillation to transfer information from the
HR domain to the LR domain. For instance,[34, 35] adopt a teacher-student framework, while[36]
proposes a distribution distillation loss. Additionally, [5] focuses on optimizing the embedding space
to boost performance. In the area of feature fusion, CAFace [9] proposes a two-stage approach
that leverages style information. CoNAN [6] learns a context vector conditioned on the distribution
and weighs features based on their estimated informativeness. ProxyFusion [10] employs learnable
queries to select a sparse set of expert networks for feature aggregation. Recent architecture-based
methods include PETALface [11], which introduces two image quality-adaptive LoRA modules. Our
work, FaceMoE, also falls within the architecture category. We introduce multiple FFN experts,
each specialized in different face regions for enhanced feature encoding. This design achieves
state-of-the-art performance on multiple low-resolution face recognition benchmarks.

Mixture of Experts. Mixture of Experts (MoE) architectures have emerged as a powerful approach
to scale model capacity efficiently by activating only a subset of specialized experts per input. [37]
introduced sparsely-gated MoEs, demonstrating their effectiveness in large language models. [38]
employed conditional computation and automatic sharding to scale transformer-based models to the
trillion-parameter range through efficient model and data parallelism. Several works have adopted
the MoE design for vision applications such as image classification [39, 40, 41, 42], object detection
[43, 44], semantic segmentation [45, 46], and image generation [47, 48, 49]. Building on these

3



advances, recent efforts have also explored MoE architectures for face-related applications. MoE-
FFD [50] proposes a parameter-efficient ViT-based approach for face forgery detection by integrating
MoE modules with LoRA and adapter layers. [51] presents a MoE-injected architecture with a
dynamic expert aggregation network for generalizable face anti-spoofing. In our work, we aim to use
an MoE-enhanced transformer architecture to boost the performance of LR-FR.

3 Method

In this work, we aim to enhance the generalization capability of face recognition models, with a
particular focus on improving LR-FR performance. We first introduce preliminary concepts regarding
Mixture of Experts. We then propose FaceMoE, an MoE-enhanced transformer that facilitates robust
feature extraction across both HR and LR domains, while mitigating catastrophic forgetting when
fine-tuned on LR datasets. Finally, we outline our training framework for stable convergence.

3.1 Preliminaries: Mixture of Experts

The MoE framework [52, 37] is a modular neural architecture that leverages multiple specialized
sub-models (experts) to model complex data distributions. Formally, let x ∈ Rd be an input vector.
The MoE model consists of N experts {fi(x; θi)}Ni=1, where each fi : Rd → Rm is parameterized
by θi, and a gating network G(x;ϕ) = [w1(x), . . . , wN (x)], parameterized by ϕ, which outputs a
probability distribution over the experts such that

∑N
i=1 wi(x) = 1. The gating weights are commonly

obtained using a softmax, defined as wi(x) =
exp(gi(x))∑N

j=1 exp(gj(x))
, where gi(x) denotes the score of the

i-th expert. The final output of the MoE is a convex combination of the expert outputs, given by

y =

N∑
i=1

wi(x)fi(x; θi).

The training objective minimizes a loss function L = 1
K

∑K
k=1 ℓ

(
y(k),

∑N
i=1 wi(x

(k))fi(x
(k); θi)

)
,

where ℓ(·, ·) is a task-specific loss (such as mean squared error or cross-entropy). Sparse MoE
variants [37] further improve computational efficiency by restricting active experts to a subset S ⊂
{1, . . . , N}, yielding y =

∑
i∈S wi(x)fi(x; θi). In this work, we propose FaceMoE, which adopts

the MoE paradigm within a transformer-based FR model to enable dynamic routing and specialization
across experts, thereby enhancing feature extraction and improving LR-FR performance.

3.2 FaceMoE

To address the challenge of feature extraction in LR-FR, we introduce FaceMoE, a novel transformer
architecture enhanced with an MoE mechanism. The primary motivation behind integrating MoE
within the transformer blocks is to encourage dynamic specialization of sub-networks (experts) to
different patterns present in facial data. FaceMoE inserts the experts into the feed-forward (MLP)
layers. We select linear projections as experts due to their proven capacity to introduce additional
non-linearity when composed with transformer self-attention, enhancing the model’s ability to capture
complex patterns in data [53]. The linear layer experts serve to extract complementary information
from the attended tokens generated by the multi-head self-attention operation. This design choice
balances expressiveness and computational efficiency, as the MLP layers constitute a significant
portion of transformer model capacity. This modular approach allows the model to adapt better to
low-resolution face images, while preserving pretrained knowledge.

Mixture of Experts MLP Layer:

In FaceMoE, the MoE is incorporated inside the MLP layers of the transformer block. Let x ∈ RT×d

represent a sequence of T tokens, each of dimensionality d, output by the self-attention block. The
expert layer comprises N expert MLPs, {fi(x; θi)}Ni=1, each parameterized by weights θi. The
experts operate independently but in parallel to process the input tokens. An individual expert is a
two-layer fully connected network with weights {Wi,1,Wi,2} and biases {bi,1, bi,2}, defined as:

fi(xt) = Wi,2 · σ(Wi,1xt + bi,1) + bi,2, ∀t ∈ {1, . . . , T},
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where σ(·) is an activation function, in this case GELU [54], Wi,1 ∈ Rd×h, Wi,2 ∈ Rh×d, bi,1 ∈ Rh,
and bi,2 ∈ Rd, with h being the hidden dimension. This formulation enables each expert to non-
linearly transform and project each token representation.

Top-k Router:

The top-k router is a core component of FaceMoE, responsible for dynamically assigning input tokens
to a subset of experts. Given token embeddings x ∈ RT×d, the router computes expert selection logits
for each token xt using a linear projection: zt = xtWr, where Wr ∈ Rd×N are learnable routing
weights, and zt ∈ RN contains the routing scores for the N experts. For each token t, the router selects
the indices of the top-k experts with the highest activations: (i1, i2, . . . , ik) = TopK(zt), where
ij ∈ {1, . . . , N}. The logits of the selected experts are normalized by a softmax over the top-k values

to produce the routing probabilities: wij (xt) =
exp(zt,ij )∑k

j=1 exp(zt,ij )
. The final output of the MoE layer for

token xt is a convex combination of the outputs of the selected experts: yt =
∑k

j=1 wij (xt)fij (xt).
This sparse routing strategy leads to significant computational savings, as only k < N experts
are active per token. Importantly, it enables efficient adaptation to low-resolution datasets. In
our experiments, we empirically found that setting N = 3 and k = 2 yielded the best trade-off
between model performance and efficiency. Under this configuration, we observed that the router
exhibits conditional routing behavior, where each expert is implicitly specialized for certain semantic
regions of the face, as shown in Figure 2. This behavior can be expressed by the conditional routing
probability:

P(ij | Rt = r) > P(ij | Rt ̸= r), ∀r ∈ {high-freq, low-freq, landmarks},
where Rt denotes the semantic or frequency region of token xt. Specifically, tokens corresponding to
high-frequency regions (e.g., edges, contours, hair textures, background) are primarily routed to one
expert; tokens from low-frequency smooth regions (e.g., cheeks, forehead) are directed to a second
expert; and tokens corresponding to landmark regions (e.g., eyes, nose) are routed to the third expert.

3.3 Training Framework

To train FaceMoE, we optimize a composite objective combining a primary face recognition loss
with auxiliary regularization terms designed to stabilize the MoE routing process. The primary loss
is based on the well-established CosFace margin-based softmax loss [15] denoted as Lface, which
encourages inter-class separability and intra-class compactness in the learned embedding space. In
addition, we introduce two auxiliary losses applied to the router network:

1. Router z-loss: This regularization term penalizes the magnitude of the routing logits to mitigate
over-confident expert assignments and support stable gradient flow throughout training. For a batch
size B, where each sample contains T tokens, the router z-loss is formulated as:

Lz = λz ·
1

B · T

B∑
b=1

T∑
t=1

∥zb,t∥22,

where zb,t ∈ RN is the vector of raw routing logits for token t in sample b, ∥ · ∥2 denotes the
ℓ2-norm, and λz is a regularization coefficient controlling the penalty strength. This quadratic penalty,
distributed over the entire batch, encourages the router to generate smoothly varying logits with lower
variance, enhancing routing stability and mitigating expert collapse.

2. Load balancing loss: This loss promotes uniform utilization of experts across all tokens and
samples, mitigating the risk of expert under-utilization or collapse. For a batch size B, the load
balancing loss is defined as:

Lbalance = λb ·N · 1

(B · T )2
N∑
i=1

(
B∑

b=1

T∑
t=1

pb,t,i

)
·

(
B∑

b=1

T∑
t=1

⊮ [i ∈ TopK(zb,t)]

)
,

where pb,t,i =
exp(zb,t,i)∑N

j=1 exp(zb,t,j)
is the softmax probability of assigning token t in sample b to expert

i. ⊮ [i ∈ TopK(zb,t)] is an indicator function that equals 1 if expert i is among the top-k selected
experts for token t in sample b, and 0 otherwise. The hyperparameter λb controls the strength of
this regularization term. This formulation jointly considers the importance of expert i (measured by
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the sum of routing probabilities across all tokens) and the load (the count of tokens routed to expert
i). The inclusion of Lbalance in the final objective promotes balanced expert selection and prevents
bottlenecks in expert utilization.

The total loss is defined as:
Ltotal = Lface + λ · (Lz + Lbalance),

where λ is a weighting factor to balance the main recognition objective with the auxiliary routing
regularizations. This joint optimization framework allows FaceMoE to efficiently scale model capacity
while dynamically specializing experts to different facial regions, thereby enhancing low-resolution
face recognition performance. The FaceMoE architecutre is shown in Figure 2 and the training
procedure is shown in Algorithm 1.

Algorithm 1 FaceMoE Training Framework
Input: Training samples {x(k), y(k)}Kk=1,
FaceMoE weights θ = {θ1, . . . , θN ,Wr},
Experts {fi(·; θi)}Ni=1, Router Weights Wr

Hyperparameters: λ, λz, λb

Output: Trained FaceMoE weights θ
1 for each training epoch do
2 for each batch {xb, yb}Bb=1 do
3 for each token xb,t in xb do
4 zb,t = xb,tWr ▷ compute routing logits

(i1, . . . , ik) = TopK(zb,t) ▷ select top-k experts

wij
(xb,t) =

exp(zb,t,ij
)∑k

l=1
exp(zb,t,il

)
▷ routing weights

pb,t,i =
exp(zb,t,i)∑N

j=1
exp(zb,t,j)

▷ softmax prob. for fi

yb,t =
∑k

j=1 wij
(xb,t)fij (xb,t) ▷ MoE output

5 end
6 Lface = CosFace(yb,t) ▷ face recognition loss

Lz = λz · 1
BT

∑
b,t ∥zb,t∥

2
2 ▷ router z-loss

Lbalance = λbN
1

(BT )2

∑
i

(∑
b,t pb,t,i

)
·
(∑

b,t ⊮[i ∈ (i1, . . . , ik)]
)

▷ load balancing loss

Ltotal = Lface + λ(Lz + Lbalance) ▷ total loss
θ ← Optimizer(θ,∇θLtotal) ▷ parameter update

7 end
8 end

Patch 
Embedding

Transformer 
Blocks

LayerNorm

Multi-head Attn.

LayerNorm

MoE-MLP

Top-k router

Expert 1 Expert 2 Expert N

Figure 2: FaceMoE Architecture.

4 Experimental Setup

Datasets. We use WebFace4M [55] as our pre-training dataset, which consist of approximately 4M
images, with 205, 990 identities. To demonstrate the effectiveness of the proposed FaceMoE for
low-resolution face recognition, we evaluate it on 3 low-resolution datasets. Further, to validate
the minimal drop in pretrained performance, we also evaluate its performance on 6 high-quality
datasets and 2 mixed-quality datasets. The high-quality datasets include LFW [56], CFP-FP [57],
CPLFW [58], AgeDB [59], CALFW [60], and CFP-FF [57]. The mixed-quality datasets are IJB-
B [61] and IJB-C [62]. The low-resolution datasets include TinyFace [4], IJB-S [7], and BRIAR
3.1 [20]. The TinyFace [4] dataset contains 169, 403 low-resolution images spanning 5, 139 identities,
with a designated training subset of 7, 804 images covering 2, 570 identities. The IJB-S [7] dataset,
designed for surveillance video-based face recognition, comprises 398 videos and 202 identities.
We evaluate it under Surveillance-to-Surveillance protocol, where "Surveillance" refers to footage
from surveillance cameras. The BRIAR [20] training set includes 550, 000 images from 577 distinct
identities. For the BRIAR evaluation, we follow Protocol 3.1 (face-included treatment), in line
with prior works [6, 10]. This evaluation protocol features a gallery of 86, 958 controlled images
representing 615 identities and a probe set comprising 5, 435 clips from 260 identities.
Evaluation Setup and Metrics. We organize our experiments into two protocols to comprehensively
evaluate FaceMoE across a variety of scenarios. In Protocol-1, we pre-train FaceMoE on the
WebFace4M [55], finetune it on the challenging low-resolution BRIAR [20] dataset, and evaluate
its performance using BRIAR Protocol 3.1, demonstrating the effectiveness of FaceMoE for low-
resolution face recognition. We also test the model on IJB-S [7] which is another challenging
video-surveillance dataset to show its out-of-distribution performance. In Protocol-2, we finetune
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Method TAR@FAR
0.01% 0.1% 1%

Pretrained
CosFace [15] (R50) 22.55 35.43 52.20
CosFace [15] (ViT-B) 34.29 47.41 62.81
CosFace [15] (Swin-B) 33.77 45.93 61.17

Finetuned on BRIAR train set
GAP [63] [ICLR 2014] 31.70 40.81 50.76
NAN [64] [CVPR 2017] 34.86 44.96 54.44
CosFace [15] [CVPR 2018] 11.62 29.68 58.66
MCN [65] [BMVC 2018] 34.84 45.01 54.25
CAFace [9] [NeurIPS 2022] 33.41 41.95 51.31
CoNAN [6] [IJCB 2023] 36.52 46.14 56.32
ProxyFusion [10][NeurIPS 2024] 40.10 53.90 68.90
PETALface [11] [WaCV 2025] 35.12 55.35 75.43

FaceMoE 42.36 61.47 81.27

Table 1: Results on BRIAR Protocol 3.1.

Method TPIR@FPIR Rank Retrieval
1% Rank-1 Rank-5

Pretrained
CosFace [15] (R50) 3.67 33.62 49.40
CosFace [15] (ViT-B) 2.58 25.76 40.69
CosFace [15] (Swin-B) 2.11 22.52 37.97

Finetuned on BRIAR train set
CosFace [15] [CVPR 2018] 1.72 16.44 31.58
PFE [66] [CVPR 2019] 0.84 9.20 20.82
RSA [67] [ICCV 2019] 0.75 16.82 31.80
MARN [68] [ICCVW 2019] 0.19 22.25 34.16
ArcFace [14] [CVPR 2019] 5.32 32.13 46.67
CFAN [69] [IJCB 2019] 5.79 31.66 45.59
CurricularFace [19] [CVPR 2020] 2.53 19.54 32.80
AdaFace [18] [CVPR 2022] 4.96 35.05 48.22
CAFace [9] [NeurIPS 2022] 8.78 36.51 49.59
PETALface [11] [WaCV 2025] 12.25 38.32 51.50

FaceMoE 14.85 44.81 56.12

Table 2: Results on IJB-S (Surv. to Surv.).

our model on TinyFace [4] and evaluate it on its test set. With this protocol, we aim to highlight the
capability of FaceMoE to adapt to low-resolution datasets while maintaining performance on high-
resolution and mixed-quality datasets. We evaluate the models on high-resolution and mixed-quality
datasets using 1:1 verification accuracy and TAR@FAR across various thresholds. For TinyFace, we
apply rank retrieval metrics at Rank-1, Rank-5, and Rank-10. On the BRIAR dataset, we report both
TAR@FAR at different thresholds and closed-set rank retrieval at Rank-1, Rank-5, and Rank-20. For
IJB-S, we evaluate open-set performance using TPIR@FPIR = 1% and 10%, along with closed-set
rank retrieval at Rank-1, Rank-5, and Rank-10.
Implementation Details. We train FaceMoE on the WebFace4M dataset with a batch size of 128 per
GPU for 26 epochs. We employ the AdamW optimizer with a weight decay of 5e−2. A Polynomial
learning rate scheduler is used, with 1 warmup epoch and an initial learning rate of 10−3. We
fine-tune FaceMoE on the TinyFace and BRIAR datasets in two stages: linear probing followed by
full fine-tuning. For TinyFace, during linear probing, we train for 10 epochs with an additional 2
warmup epochs. For full fine-tuning, we train for 40 epochs with an additional 4 warmup epochs.
The learning rates and batch sizes for the two stages are 10−3, 10−4 and 16, 8, respectively. For
BRIAR, both linear probing and full fine-tuning are conducted for 20 epochs with an additional 2
warmup epochs. The learning rates and batch sizes for the two stages are 10−3, 5 × 10−6 and 64,
8, respectively. During training, we employ a combination of face recognition loss, router z-loss,
and load balancing loss. The corresponding hyperparameters λ, λz , and λb are set to 10, 1, and 1,
respectively. We obtain the best results with 3 experts (N = 3) and 2 active experts per token (k = 2).
All code is implemented in PyTorch, and experiments are conducted on eight NVIDIA A6000 GPUs,
each with 48 GB of memory. Additional details are provided in the appendix.

5 Results and Analysis

Results on Protocol 1: The results for Protocol 1 are summarized in Table 1 and Table 2. The
pretrained transformer backbones ViT-B and Swin-B show superior performance than ResNet-50,
however these models are not finetuned on low-resolution datasets and perform poorly compared to
finetuned methods. Traditional feature aggregation methods such as GAP [63], NAN [64], MCN [65],
CAFace [9], and CoNAN [6] yield incremental improvements, but remain limited in their ability to
extract discriminative identity features from degraded probe images, as they use a feature encoder
with single FFN and focus on selecting relevant frames with sufficient identity information. However,
our method aims to improve the identity extraction of all the frames by improving the feature extractor
itself. Recent methods, ProxyFusion [10] and PETALface [11], achieve a TAR@FAR of 40.10, 53.90,
68.90 and 35.12, 55.35, 75.43 at thresholds 0.01%, 0.1% and 1%, respectively.

Our proposed FaceMoE achieves the highest performance across all thresholds with 42.36%, 61.47%,
and 81.27% TAR at 0.01%, 0.1%, and 1% FAR, respectively. The superior performance of FaceMoE
can be attributed to its resolution-aware feature extraction enabled by specialized experts. Each
expert is implicitly trained to focus on distinct semantic regions of the face, such as edges, contours,
or landmark regions, enabling dynamic adaptation to severely degraded probe images. This capability
is especially valuable in low-resolution scenarios, where identity information is limited and often
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Figure 3: FaceMoE incurs minimal performance
drop on HR and mixed-quality datasets, effectively
extracting features from HR gallery and LR probe.

Method Arch. Data Rank-1 Rank-5 Rank-10
Pretrained

URL [70] R-100 MS1MV2 63.89 68.67 –
CurricularFace [19] R-100 MS1MV2 63.68 67.65 –
CosFace [15] R-50 WF4M 72.71 76.36 78.99
ArcFace [14] R-50 WF4M 73.04 76.85 79.45
AdaFace [18] R-50 WF4M 73.49 76.60 79.07
CosFace [15] ViT-B WF4M 73.57 76.95 78.94
ArcFace [14] ViT-B WF4M 72.74 76.28 78.13
AdaFace [18] ViT-B WF4M 74.03 77.22 79.37
CosFace [15] Swin-B WF4M 72.74 76.79 79.18
ArcFace [14] Swin-B WF4M 73.31 76.68 79.23
AdaFace [18] Swin-B WF4M 74.40 77.62 79.51
KP-RPE [71] ViT-B WF4M 75.80 78.49 –

Finetuned on TinyFace
CosFace [15] Swin-B WF4M 71.32 76.42 79.45
ArcFace [14] Swin-B WF4M 71.11 76.63 79.96
PETALface [11] Swin-B WF4M 75.45 79.05 81.19

FaceMoE (Ours) Swin-B WF4M 76.18 79.69 81.75

Figure 4: Results on TinyFace. Pre-trained mod-
els when finetuned on TinyFace dataset results
in performance drop. FaceMoE achieves SOTA
performance and is capable of adapting to low-
resolution dataset with minimal performance
drop in HQ and mixed-quality dataset.

confined to localized regions. In such cases, key identity discriminative features, such as the eyes,
nose, or mouth may be occluded, blurred, or affected by extreme lighting conditions. FaceMoE
addresses this by allotting specialized semantic experts to other informative regions, enabling a
more robust and comprehensive identity representation. This enhanced feature extraction from
low-resolution probes directly contributes to superior feature aggregation, resulting in state-of-the-
art performance for low-resolution face recognition on the BRIAR dataset. Table 2 reports the
generalization performance on the IJB-S dataset under Surveillance-to-Surveillance protocol. We
observe similar trends, with FaceMoE outperforming all prior methods by a significant margin.
FaceMoE achieves 14.85% TPIR at 1% FPIR, along with 44.81% and 56.12% Rank-1 and Rank-5
retrieval accuracies, respectively. The resolution-aware feature extraction and expert specialization
effectively handle the extreme variability and degradation inherent in surveillance footage, extracting
identity features from limited and inconsistent information across frames. This enhanced feature
extraction leads to robust identity recognition under the most challenging low-resolution conditions.

Results on Protocol 2: The results for Protocol 2 are shown in Figure 4 and 3. Finetuning pretrained
models such as CosFace [15] and ArcFace [14] on TinyFace leads to a drop in performance not only
on the LR dataset but also on the mixed-quality and HR datasets. This degradation is primarily due
to catastrophic forgetting, as these models lack mechanisms to effectively adapt to low-resolution
data while retaining the discriminative features learned during pretraining. This effect can also be
observed in Table 1 and Table 2, where finetuned CosFace shows a significant performance drop on
BRIAR Protocol 3.1 and IJB-S compared to pretrained CosFace. In contrast, FaceMoE establishes a
new state-of-the-art on TinyFace with 76.18%, 79.69%, and 81.75% Rank-1, Rank-5, and Rank-10
retrieval accuracy, respectively, with a minimal drop in performance on the HR and mixed quality
datasets as illustrated in Figure 3.

The superior performance of FaceMoE can be attributed to its unique architectural design, which
leverages multiple sparse FFN experts to facilitate effective adaptation to low-resolution datasets,
while incurring minimal performance drop on high-resolution and mixed-quality datasets. The
top-k router renders the network modular and sparsely activated, restricting weight updates during
finetuning to only a subset of experts. As a result, the model avoids catastrophic forgetting as
observed in traditional models. During finetuning of FaceMoE, the model exhibits a phenomenon
known as selective drift [13], where certain experts adapt specifically to the low-resolution dataset,
while others retain the pretrained knowledge. As shown in Figure 5(c), expert 2’s focus remains
largely consistent before and after finetuning, focusing on broader facial shapes, indicating the
preservation of pretrained semantic knowledge. However, token assignment changes significantly
during finetuning: before finetuning, expert 0 was predominantly utilized, whereas after finetuning,
expert 1 becomes more active. This shift highlights FaceMoE’s resolution-aware capability and its
dynamic utilization of experts based on input resolution. The expert activation maps after finetuning
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Figure 5: (a) Computational trade-off analysis across different MoE configurations (Bubble size ∝
#Parameters). (b) Impact of N and k on performance, evaluated on the BRIAR dataset. (c)
FaceMoE expert activation maps and token assignment histograms before and after fine-tuning on a
low-resolution dataset. The updated token assignments indicate resolution-aware feature extraction,
while the semantically coherent expert activation maps demonstrate stable convergence.

display more semantically coherent and well-defined regions, showcasing the efficacy of employing
multiple FFN experts in conjunction with a top-k router for stable adaptation to low-resolution data.
FaceMoE’s ability to adapt to low-resolution data while preserving pretrained knowledge enables
effective feature extraction across high-resolution gallery and low-resolution probe domains.

Impact of N and k on Performance: We perform an ablation study to investigate the effect of
the number of experts (N ) and the number of active experts per token (k) on model performance.
Figure 5(b) shows the Rank-1 retrieval accuracy on the BRIAR dataset for different (N, k) configura-
tions. We observe that both under-parameterization and over-parameterization can adversely impact
performance. A low number of experts (N = 1) limits the model’s capacity to specialize across facial
regions, resulting in sub-optimal performance (70.2%). On the other hand, increasing the number
of experts excessively (N = 4) introduces routing instability and model fragmentation, leading to
degraded performance across multiple k settings. Our best performance is achieved with N = 3
experts and k = 2 active experts per token, corresponding to the FaceMoE configuration, which
achieves 73.1% Rank-1 retrieval. This setting strikes an effective balance between model capacity
and routing stability, providing sufficient expert diversity to allow specialization across semantic
regions (e.g., hair, landmarks, textures), while avoiding excessive fragmentation of the feature space.

Computational Analysis: We study the computational cost of different (N, k) configurations.
Figure 5(a) shows the FLOPs for various combinations of number of experts N and active experts
per token k. As expected, computational cost scales with k, since more experts are evaluated per
token. Importantly, for fixed k, the parameter count remains constant regardless of N , as only
k experts contribute to the forward pass. For example, with k = 2, both (N = 3, k = 2) and
(N = 4, k = 2) have the same number of active parameters with 26.29 GFLOPs, despite differing
in total experts. The optimal configuration for FaceMoE is (N = 3, k = 2), achieving a favorable
trade-off between model capacity and computational cost. This results in a moderate 26.29 GFLOPs,
offering a 2.17× increase in capacity over the standard Swin-B backbone (15.88 GFLOPs) with only
a 1.66× increase in FLOPs. This validates the efficiency of sparsely activated experts, enabling the
model to significantly boost its representation power while maintaining practical inference cost.

6 Conclusion

In this work, we present FaceMoE, a novel transformer-based architecture enhanced with a Mixture
of Experts mechanism to address persistent challenges in low-resolution face recognition. We
incorporate multiple FFN experts and a top-k router, enabling the experts to specialize in different
semantic regions of the face. The proposed framework enhances the discriminative power of feature
extraction under severe image degradations, and the presence of multiple FFN experts ensures stable
finetuning with minimal performance loss on high-resolution and mixed-quality datasets. Extensive
evaluations across eleven diverse benchmarks, including challenging low-resolution datasets such as
TinyFace, IJB-S, and BRIAR, demonstrate that FaceMoE consistently outperforms existing methods,
establishing new SOTA performance in low-resolution face recognition. We believe FaceMoE offers
a promising foundation for future research in adaptive, resolution-aware face recognition models and
provides a scalable solution for real-world applications in surveillance and security systems.
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Appendix

As part of the appendix, we present the following as an extension to the ones shown in the paper:

• Backbone Ablation (Section A)
• Performance with Data Scaling (Section B)
• Additional Implementation Details (Section C)
• Expert Activation Maps (Section D)
• Failure Case Analysis (Section E)
• Limitations and Future Work (Section F)
• Social Impact Statement (Section G)
• Ethical Impact Statement (Section H)

A Backbone Ablation

To evaluate the backbone-agnostic nature of FaceMoE, we conduct experiments using both the stan-
dard Vision Transformer (ViT-B) and the hierarchical Swin Transformer (Swin-B). Table A presents
performance results across four challenging benchmarks: IJB-B and IJB-C (TAR at FAR = 10−4),
TinyFace (Rank-1), and BRIAR Protocol 3.1 (Rank-1/5/20). The results lead to four key observations.
First, FaceMoE integrates seamlessly with both ViT-B and Swin-B architectures without requiring
any architecture-specific modifications, highlighting its generality. Second, FaceMoE-equipped
models retain performance on IJB-B and IJB-C that is comparable to the ViT-B baseline, demon-
strating that the Mixture-of-Experts routing mechanism preserves the generalizable features learned
during pretraining. Third, FaceMoE consistently improves performance on difficult benchmarks,
including an approximately 2.3% absolute increase in Rank-1 accuracy on TinyFace and a notable
15.8% gain on BRIAR Protocol 3.1 (Rank-1). Finally, combining FaceMoE with the hierarchical
Swin-B backbone yields further performance improvements, particularly under stringent evaluation
settings, such as a 1.72% increase in Rank-1 accuracy on BRIAR. These findings collectively confirm
that FaceMoE is inherently backbone-agnostic, maintains pretrained discriminative capacity, and
significantly enhances robustness in low-FAR and low-resolution face recognition scenarios.

Backbone IJBB IJBC TinyFace BRIAR Protocol 3.1
e-4 e-4 Rank-1 Rank-1 Rank-5 Rank-20

ViT-B 95.18 96.87 73.57 55.59 63.44 72.76
ViT-B (FaceMoE) 89.75 92.08 75.85 71.34 80.24 89.20
Swin-B (FaceMoE) 93.27 95.28 76.18 73.06 82.18 89.03

Table 3: Results of FaceMoE with ViT-B backbone on IJBB, IJBC, TinyFace, and BRIAR Protocol
3.1. FaceMoE works for all kind of transformer backbones.

B Performance with Data Scaling

Pretraining Dataset IJBB IJBC TinyFace BRIAR Protocol 3.1
e-4 e-4 Rank-1 Rank-1 Rank-5 Rank-20

WebFace4M 93.27 95.28 76.18 73.06 82.18 89.03
WebFace12M 93.77 95.66 76.42 74.77 83.36 90.56
Table 4: Performance of FaceMoE improves with increase in pre-training dataset size.

When we increase the size of the pre-training dataset from WebFace4M to WebFace12M, FaceMoE’s
performance consistently improves across a spectrum of face recognition benchmarks. On the IJBB
protocol at a FAR of 1e−4 (after fine-tuning on TinyFace), we observe a gain from 93.27% to 93.77%.
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A similar trend holds on IJBC (also after TinyFace fine-tuning), where accuracy at the same operating
point increases by 0.38, from 95.28% to 95.66%. Even on the challenging TinyFace dataset—where
both pre-trained models are further fine-tuned on TinyFace—the Rank-1 accuracy climbs from
76.18% to 76.42%, demonstrating that additional data yields measurable benefits under difficult, low-
resolution conditions. The gains are most pronounced on the BRIAR Protocol 3.1 benchmarks (after
BRIAR fine-tuning), with Rank-1 accuracy improving by 1.71 (from 73.06% to 74.77%), Rank-5 by
1.18 (from 82.18% to 83.36%), and Rank-20 by 1.53 (from 89.03% to 90.56%). These results not
only confirm that FaceMoE continues to harness extra data to push its recognition capabilities forward,
but also illustrate strong preservation of pre-trained knowledge through successive fine-tuning stages.

All data scaling results are shown in Table B, where IJBB and IJBC results are reported after fine-
tuning on TinyFace; the TinyFace results likewise follow TinyFace fine-tuning; and the BRIAR
Protocol 3.1 results are after BRIAR fine-tuning. When the pre-training dataset is increased from
WebFace4M to WebFace12M, FaceMoE’s performance improves uniformly across all benchmarks.
On IJBB at a FAR of 1× 10−4, the TAR rises from 93.27% to 93.77% (+0.50). Similarly, on IJBC
under the same operating point, TAR increases by 0.38, from 95.28% to 95.66%. On TinyFace, Rank-
1 accuracy climbs from 76.18% to 76.42% (+0.24), demonstrating benefits even under low-resolution
conditions. The most substantial gains appear on BRIAR Protocol 3.1: Rank-1 improves by 1.71
(from 73.06% to 74.77%), Rank-5 by 1.18 (from 82.18% to 83.36%), and Rank-20 by 1.53 (from
89.03% to 90.56%). These results confirm that scaling the pre-training data both enhances FaceMoE’s
recognition accuracy and preserves its learned representations after fine-tuning on low-resolution
face recognition dataset.

Several architectural and training factors contribute to the successful scaling of data. First, the
mixture-of-experts design enables conditional computation. Although the overall model capacity
increases with the addition of more experts, each input activates only a small subset of them. This
means that tripling the dataset size does not significantly increase the computational cost for each
example. At the same time, the larger pool of experts allows the model to capture more subtle
variations in the data, such as differences in pose, lighting, and demographic diversity present in the
WebFace12M dataset. As a result, FaceMoE learns a richer set of feature subspaces, which enhances
its robustness on both standard and challenging benchmarks, even after fine-tuning on downstream
datasets.

Moreover, sparse routing serves as an implicit regularizer. FaceMoE updates only a fraction of the
model parameters in each mini-batch, which helps reduce co-adaptation among experts and protects
against overfitting, even as the dataset continues to grow. This built-in regularization becomes
increasingly valuable when training on tens of millions of images, as it ensures that each expert
develops a distinct specialization rather than converging into redundant representations. In addition,
the computational efficiency of mixture-of-experts models allows for high model capacity while
keeping the floating point operations per example manageable. This efficiency enables longer and
more thorough training within a fixed compute budget, allowing FaceMoE to fully leverage the
extensive data available in WebFace12M. Together, these factors explain why increasing the size of
the pre-training dataset leads to consistent and cost-effective improvements in FaceMoE’s recognition
performance during both pre-training and downstream fine-tuning.

C Additional Implementation Details

These are the additional details provided in addition to the ones mentioned in the main paper. Our
base architecture for all experiments is the Swin-B (Swin Transformer - Base), which serves as the
backbone for the FaceMoE model. To provide a rough estimate of computational requirements, we
report training times for various configurations of the number of experts (N ) and the number of
active experts per token (k). These estimates are not intended for comparison, as the experiments
were conducted on both NVIDIA A6000 (48GB) and A5000 (24GB) GPUs, leading to variability in
runtime. Specifically, training times (in hours) are approximately: 49 for (N=2, k=1), 57 for (N=3,
k=1), 81 for (N=3, k=2), 120 for (N=3, k=3), 49 for (N=4, k=1), 50 for (N=4, k=2), and 88 for (N=4,
k=3). To ensure a consistent and fair evaluation, we retrained the CosFace, ArcFace, and AdaFace
baselines. For other baselines, we report results as presented in their respective original publications.
All models and experiments are implemented in PyTorch and run across eight GPUs.
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D Expert Activation Maps

Input Before Finetuning After Finetuning

Figure 6: Expert activation maps before and after TinyFace finetuning. Each row shows the
spatial activations of all k experts on a input face image, before and after TinyFace finetuning.
(Left) After pretraining on WebFace4M, experts exhibit broadly overlapping activations focusing
on general facial regions (eyes, nose bridge, mouth outline). (Right) Following TinyFace finetuning,
experts specialize on distinct, localized cues (eye corners, nose shape, cheek textures, etc.), yielding
complementary attention patterns better suited to low-resolution face recognition.

To gain insight into how each expert specializes before and after TinyFace finetuning, we visualize
their spatial activation patterns on a few facial images, as shown in Figure 6. Each row presents the
activations of all k experts for a single input image.

Pretraining on WebFace4M: Before undergoing any adaptation to the TinyFace dataset, the model
is pretrained for face recognition using the large-scale WebFace4M dataset. During this phase, all
experts learn from a diverse collection of face images that vary in quality and pose, ranging from
frontal to non-frontal views. As a result, their activation maps tend to highlight broad, coarse-grained
regions, such as the overall outline of the face, the contours of the eyes, and the mouth area. There is
substantial overlap between the activation patterns of different experts, suggesting that in the absence
of further specialization, the experts tend to redundantly focus on the most generally discriminative
facial features, such as the eyes and the bridge of the nose. These features remain consistently
informative across a wide range of identities and imaging conditions.

After TinyFace Finetuning: Following finetuning on the TinyFace dataset, which consists of low-
resolution face crops extracted from unconstrained scenes, the experts begin to capture more localized
and complementary features. The activation maps demonstrate that individual experts now respond
to specific subregions or patterns. Some experts focus closely on areas such as the eye corners and
eyelid textures, which are particularly important in low-resolution scenarios. Others concentrate on
features such as the shape of the nose or the contours of the mouth. Additional experts respond to
compound patterns, including shadows on the cheeks or the silhouettes of ears. This diversity in
focus reflects the model’s adaptation to the characteristics of the TinyFace dataset. By distributing
representational capacity across multiple experts, the network learns that fine-grained, region-specific
textural cues are essential for distinguishing identities when the global structural features of the face
are degraded due to low resolution.

The transition from broadly overlapping activations in the WebFace4M pretraining phase to highly
specialized and non-redundant activation maps after TinyFace finetuning highlights the effectiveness
of the MoE architecture for domain adaptation. In low-resolution settings, relying on a single
shared backbone imposes a trade-off between capturing global structures and preserving fine-grained
local details. In contrast, the MoE framework enables different sub-networks to allocate their
representational capacity to the most reliable cues for the target domain. First, the model demonstrates
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robustness to resolution degradation. Experts that are tuned to textural patterns, such as the micro-
structure of skin around the eyes, retain their discriminative ability even when the overall facial shape
becomes indistinct. Second, the architecture facilitates the integration of complementary evidence.
By aggregating signals from multiple specialized experts, the model can combine weak, localized
features into a coherent and robust identity representation. Finally, the approach allows for efficient
adaptation. Only a subset of experts needs to specialize deeply in the new domain, while others
can maintain their generalist knowledge from pretraining. This division of labor ensures a balanced
trade-off between plasticity and stability.

These activation patterns offer clear evidence that finetuning on low-resolution dataset induces
functional specialization among experts, enabling the model to perform effectively in challenging,
low-resolution face recognition tasks.

E Failure Case Analysis

To diagnose the remaining weaknesses of our FaceMoE model, we conducted a detailed examination
of representative failure cases on the BRIAR probe set as shown in Figure 7. We identified five
dominant scenarios that consistently lead to recognition errors. First, extremely low-resolution face
crops, typically below approximately 8× 8 pixels, contain too little texture or shape information for
reliable matching. This causes the expert ensemble’s activations to become noisy and prone to errors.
Second, extreme head poses, such as profiles or tilts greater than 60 degrees, often result in facial
landmarks moving outside the visible region. In these situations, experts trained on frontal-view
patterns perform poorly. Third, heavy occlusion caused by items like masks, caps, or scarves can
obscure important facial regions. As a result, the experts struggle to extract meaningful unoccluded
features, which increases confusion with other identities. Fourth, atmospheric turbulence, including
visual distortions such as heat shimmer and motion blur that are common in long-range surveillance,
disrupts the spatial consistency of facial features. These effects fragment the activation maps and
reduce the model’s ability to form coherent representations. Finally, non-frontal views, where
subjects never present a clear frontal face during a sequence, prevent the model from obtaining a
stable canonical reference. Consequently, even viewpoint-specialized experts are unable to generate
consistent embeddings, leading to recognition failures. These failure modes illustrate that, while
FaceMoE is effective in handling low-resolution images, it remains vulnerable to conditions that
obscure or dynamically distort facial information.

Figure 7: Failure Case Analysis of FaceMoE model on the BRIAR dataset.

F Limitations and Future Work

Our training data, WebFace4M [55], is predominantly composed of Western, young, and light-skinned
subjects. We have not yet incorporated balanced sampling, debiasing loss functions, or demographic-
specific experts, which means the model may amplify existing biases. While Mixture-of-Experts
(MoE) architectures are typically used to scale model capacity efficiently, their application in face
recognition introduces unique challenges. We observe that increasing the number of experts (N )
can lead to over-fragmentation and routing instability, which may negatively affect performance.
Addressing these issues remains an important area for future work.
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G Social Impact Statement

The proposed work, FaceMoE, presents a transformer-based Mixture of Experts (MoE) architecture
that significantly advances low-resolution face recognition (LR-FR). FaceMoE enhances recogni-
tion performance on degraded or surveillance-quality imagery, offering the potential to improve
operational effectiveness in domains such as public safety, disaster response, border control, and
missing persons investigations. These improvements enable faster and more accurate identification in
scenarios where traditional face recognition systems often underperform, particularly in time-sensitive
or resource-constrained environments.

Beyond technical improvements, the broader societal implications of these advancements merit
careful consideration. As face recognition systems become increasingly capable of identifying
individuals from poor-quality images, their deployment in everyday settings such as public transit,
city surveillance, or consumer electronics is likely to accelerate. This trend could contribute to
a societal shift in which continuous identity tracking becomes normalized, potentially eroding
expectations of anonymity and reshaping perceptions of privacy in public spaces. The widespread
presence of such systems may also influence individual behavior and social engagement, particularly
in communities that are already subject to heightened surveillance.

Furthermore, access to advanced recognition systems like FaceMoE may not be distributed evenly.
Organizations with greater financial and technical resources are more likely to benefit from such
technologies, which could deepen existing disparities in areas such as law enforcement, national
security, and institutional capacity. Public trust in face recognition systems depends not only on
their technical performance but also on how transparently and equitably they are implemented. To
ensure that FaceMoE contributes positively to society, its deployment in real-world applications must
be supported by inclusive access, meaningful public dialogue, and policies that emphasize fairness,
accountability, and the protection of civil liberties.

H Ethical Impact Statement

In this research, we have carefully addressed the ethical implications surrounding face recognition
technology, particularly focusing on issues of privacy, surveillance, and potential biases. Our model
was trained on publicly available datasets: WebFace4M and WebFace12M [55], acquired through
signing the official license agreement. For benchmarking, we utilized IJB-B [61], IJB-C [62], IJB-
S [7], BRIAR [20], and TinyFace [4], which contain diverse, mixed-quality, and low-resolution
images from real-world settings. These datasets were obtained through official repositories and
websites, ensuring adherence to ethical standards. Informed consent for publication was acquired for
all subjects depicted in the paper, supporting ethical data use.

This research offers significant benefits within authorized security contexts, where accurate low-
resolution face recognition enhances identification capabilities in challenging environments. When
applied responsibly, these advancements contribute to security and enable legitimate monitoring
efforts. Importantly, the model’s design and training process adhere to standards that do not introduce
risks beyond those inherent in traditional face recognition systems. However, we acknowledge the
potential for misuse in unauthorized surveillance, profiling, or privacy infringements if deployed
outside controlled, ethical frameworks. Our work aims to support face recognition for responsible
use within authorized security settings, while recognizing that unintended applications or misinterpre-
tations could lead to societal issues, such as privacy erosion or biased treatment of certain groups. By
proactively addressing these considerations, we seek to mitigate risks associated with the model’s
deployment and advocate for ethical oversight to prevent misuse.

Ethical considerations for human subjects and data usage were fully respected. This research relies
solely on existing datasets and no new consent was required. These datasets are approved for research
use, ensuring adherence to ethical data standards. No individuals were recruited which eliminates the
need for compensation. The datasets do not predominantly include vulnerable populations, such as
minors, elderly individuals, or other at-risk groups, instead representing a standard demographic spec-
trum. Given our commitment to ethical standards, this research presents minimal risk to individuals
while advancing low-resolution face recognition technology.
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