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Abstract—Face recognition is a widely studied problem
where the aim is to design a robust network that assigns higher
similarity to the same face and reduces similarity between
dissimilar faces. Previous research utilizing margin-based loss
functions has achieved near-perfect accuracies on high-quality
face recognition datasets. However, the same networks fail to
perform well on low-quality images due to the degradation of
facial attributes necessary for distinguishing different faces. In
this paper, we tackle the problem of low-quality face recognition.
We base our analysis on an observation that the change of
loss functions produce marginal changes in performance for
low-quality face recognition. Hence, rather than following the
traditional approach of defining problem-specific regularized
functions, we take a closer look at the nature of data in
low resolution datasets and redefine paradigms in terms of
model choice, data input pipeline and fine-tuning schemes.
With the accumulated effect of all our design choices, we
achieve state-of-the-art results in medium-quality benchmarks
(1JB-B, 1JB-C) as well as multiple challenging benchmarks for
unconstrained face recognition (Tinyface, IJB-S and BRIAR),
thereby opening up a new avenue of research in the area. The
pretrained model are publicly available in https://github.
com/Kartik—-3004/PETALface

I. INTRODUCTION

Face recognition (FR) is a well researched problem ow-
ing to its utility in security and surveillance [4], [30]. A
large number of works have tackled the high-resolution face
recognition problem owing to its practical relevance and have
achieved near-perfect accuracies [7], [33], [16], [27]. Most of
these approaches utilize deep networks with different variants
of margin-based losses [7], [33] that are well-suited for
separating different facial clusters along a hypersphere. Low-
quality face recognition [16], [14], on the other hand, refers
to developing a method capable of recognizing faces while
being robust to degradation in image quality. These degra-
dations may include low-resolution images, compression
artifacts, color jitter, atmospheric turbulence, or a complex
non-linear combination of multiple of these, hence making
low-quality face recognition an unsolved and challenging
problem to date.
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Research Projects Ac- tivity (IARPA), via [2022-21102100005]. The views
and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed
or implied, of ODNI, IARPA, or the U.S. Government. The US Government
is authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright an- notation therein.
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Fig. 1: We illustrate the verification performance of different
methods on the BRIAR Protocol 3.1. Our proposed method
when trained with WebFace4dM [OURS (4M)], outperforms
other existing methods utilizing different loss functions such
as AdaFace, ArcFace and CosFace. Additionally, our model
trained on WebFace42M [OURS (12M)] achieves state-of-
the-art performance. We are able to achieve a much better
performance boost over existing loss-based methods through
careful design choices utilizing the CosFace loss function.

Early research in face recognition utilized handcrafted fea-
tures like Haar [32] and SIFT features [24] to find similarity
between different facial images. However, due to the lack
of scalability of these approaches, researchers introduced
deep networks to find a practical solution that can scale
to large datasets comprising millions of identities. Margin-
based loss functions [7], [33], [16], [27] revolutionized face
recognition by providing a practical solution to learn features
that are best suited to measure the similarity between faces
at the same time separating different identities along a
hypersphere utilizing a fixed margin. Margin-based losses
can extract expressive details from facial images, enabling
the formation of representative deep features. Low-quality
face datasets [16], [5], [14], however, lack these clear facial
features, causing models trained on high-quality datasets to
fail on them.

Figure 1 shows an example where ArcFace [7], an ap-
proach that achieves more than 98% accuracy in high-quality
datasets like LFW [12] and AgeDB [29], barely achieves a
verification accuracy of 40% at le-3 for low-quality BRIAR
dataset [6]. To understand why this happens, we visualize
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Fig. 2: Top: UMAP plots of embeddings extracted from Low quality (LQ) and High quality (HQ) datasets. The first two plots
show embeddings for the LFW dataset (HQ). Existing works extract separable embeddings, but with decreased quality as
in BRIAR-CosFace, embeddings merge, reducing accuracy. Bottom: Corresponding images from LFW and BRIAR dataset,
illustrating the ease of distinguishing LFW images compared to the LQ BRIAR images.

the UMAP embeddings [26] for ArcFace features on images'
from the LFW dataset and the BRIAR dataset [6] in Figure 2.
As can be seen, high-quality embeddings from different
identities form distinct clusters, making it feasible to separate
them into different classes along a hypersphere. In contrast,
those from BRIAR [6] merge across classes, hence explain-
ing the failure of a network trained to recognize high-quality
faces. One can postulate that this happens because of training
ArcFace with a high-quality dataset like MS1MV?2 [3] and ar-
gue that training on a low-quality dataset will solve this issue.
However, previous works have already found that training a
network naively with low-quality data will only lead to a
drop in performance rather than a boost [37]. The only work
designed specifically to tackle low-quality face recognition
(AdaFace) [16] learns an adaptive margin loss where the
margin is learned based on image quality. Following this
approach, we trained networks utilizing different variants of
margin-based losses but found only marginal improvement
in low-quality verification with the inclusion of these losses.
Hence, this prompted us to reconsider the problem from
a different perspective to find a more robust solution for
low-quality face recognition. Moreover, while designing the
approach, we need to keep in mind the following points:
(1) there are very few labeled low-quality face datasets [5],
[6]; (2) different variants of margin-based losses provide
marginal improvement; (3) previous literature in face recog-
nition rarely examined different variants of architectures for
face recognition, with most works mainly aiming at finding
robust loss functions [7], [33], [27], [16]; and (4) existing
face recognition networks are highly sensitive to keypoint
locations [7], [8] and alignment of the face with reference to
the image frames.

'We have obtained Informed Consent from the subjects used in the paper

In this paper, we design an effective solution for low-
quality face recognition. Considering the challenges, we pos-
tulate that existing methods fail in low-quality face recogni-
tion because of (1) the lack of a proper data-based approach,
(2) the lack of a robust pre-trained architectures less sensitive
to keypoint alignment, and (3) the lack of a step-by-step guide
to adapt to smaller datasets. Taking these shortcomings into
account, we present a novel framework to develop face recog-
nition networks for low-quality datasets. Specifically, we treat
low-quality face recognition as a domain adaptation problem
and solve it utilizing a transfer-learning based approach.
Moreover, we reveal careful design choices like fine-tuning
resolution, dropout in the network and optimizer choices,
which allows us to get a significant boost in performance
when adapted to low resolution datasets. We perform exten-
sive experiments across different low-resolution benchmarks
(TinyFace [4], IJB-S [14], and BRIAR [6]) as well as public
benchmarks for medium-quality face recognition and obtain
state-of-the-art results across all the benchmark datasets. To
summarize, our contributions are as follows:

o We discover that rather than the choice of loss function,
the architecture and the choice of training dataset plays a
key role in low-resolution face recognition performance.

o We propose a simple supervised pre-training, fine-
tuning based algorithm for boosting the facial recog-
nition performance in low resolution datasets.

o We discover that the choice of bigger crops gives a sig-
nificant boost in performance for low-quality datasets.

« We further propose multiple training techniques to boost
performance for low-resolution datasets.

« We obtain state-of-the-art results across multiple bench-
mark datasets for low-resolution and mixed-quality face
recognition.
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Fig. 3: An overview of the proposed method. We first perform supervised pre-training on a large scale, aligned, clean
dataset. After convergence, we utilize a small-scale, low-resolution dataset for fine-tuning and initiate with linear probing
for alignment, during which the backbone is frozen. Following the alignment, we perform a full-scale fine-tuning.

II. PROPOSED METHOD

In this section, we proceed to discuss the design of
our proposed approach with the relevant background. The
selection of Swin transformer architecture is motivated by
its superior transfer learning properties compared to vision
transfomers as proposed by Kim er al[15]. Furthermore,
the Swin Transformer demonstrates enhanced performance
using the same computational resources and an identical
number of parameters compared to conventional Vision
Transformers [9]. Specific details of the network structure
are provided in the experiments section. Before delving into
the specific details of our method, we discuss the relevant
background concerning these design choices, how they have
been previously utilized in general vision tasks, and which
aspects of facial recognition rendered them unfeasible in
prior face recognition works.

A. Background

1) Transformer architecture for Face recognition: Previ-
ous works have primarily utilized Convolutional Neural Net-
work (CNN)-based architectures for face recognition tasks,
a trend that has persisted over time. A major reason for this
is the development of a large number of face recognition
approaches prior to the year 2020 [9], [21], resulting in
most baselines being established using CNNs. Additionally,
as mentioned in the previous sections, Resnet-101(R-101)
and ResNet-200(R-200) [11] architectures have shown near-
perfect results on many existing datasets, thus diminishing
the perceived need for a transformer-based approach [9].
However, keeping all these facts in mind, R-101 and R-
200 architectures are bulky and slow. Moreover, they suffer
from inductive biases. Inductive bias refers to the inherent
modeling bias that is present in CNNs due to the design
structure. As an example, consider an object that is present
in the top of an image and the bottom of an image. Both
of these would be treated equally in a convolutional neural
network. However, in the case of faces, we argue that such
a modelling procedure might not always be beneficial since
most features useful for face recognition are present along
keypoint locations rather than other parts like corners or
the forehead/cheek part of the face. Therefore, a differential
preference for different areas of the face would aid in
designing a robust model. Moreover, current face recognition
architectures are highly sensitive to the alignment of the 5
major keypoints comprising of eyes, nose and mouth in the
face [8]. Current CNN-based frameworks are highly sensitive

to these key point locations in the testing images, and even
small variations to these key points cause a drastic drop in
face recognition performance. In contrast, transformers with
their inherent positional embeddings, exhibit less sensitivity
to shifts in keypoint positions and maintain robustness even
in low-resolution datasets [14], [4], [6].

2) Transfer learning in deep learning: Transfer learn-
ing [31], [34] has gained widespread popularity for both
vision and language tasks. In Transfer learning, a large
network trained on a big-dataset is adapted for the same
or a different task on a smaller dataset. During transfer
learning [10], [34], [31], the weights learned from the larger
dataset are directly utilized to extract meaningful features
from the smaller dataset. Transfer learning is particularly
beneficial because training with limited data often fails to
extract diverse, meaningful features, and during testing, the
network may encounter scenarios where it struggles to extract
high-quality features. Therefore, training on a large, diverse
dataset and transferring the learned models to a smaller
dataset is often preferred. Transfer learning has proven ef-
fective for natural language modelling and is widely used in
large language models (LLMs) for instruction tuning [39],
[36]. In the realm of vision tasks, transfer learning has
been employed through various approaches. (1) Large-scale
supervised pre-training on a large dataset followed by super-
vised fine-tuning on a smaller dataset. (2) Large scale self-
supervised pre-training[10] using masked image modelling
and supervised fine-tuning. However, for face recognition,
both these approaches have not been explored. Nevertheless,
given the suboptimal performance of existing methods on
low-quality datasets and the typically small size of public
face recognition datasets, we were motivated to explore these
methodologies while developing our approach.

B. Unconstrained Face Recognition

Our method consists of three stages during the training
process: supervised pre-training, linear probing alignment,
and full fine-tuning stage. Additionally, we propose new
design choices to enhance performance: (1) choosing larger
fine-tuning crops, (2) utilizing a more effective optimizer,
(3) employing dropout during pre-training. In the following
sections, we will discuss these parts in greater detail.

1) Design choice: Supervised pre-training & Fine-tuning:
Multiple approaches for pre-training have been proposed in
the literature, including self supervised pre-training using
Masked autoencoders (MAEs) [10] where a portion of the
input image is masked and the network learns to reconstruct
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Fig. 4: An illustration of the process of extracting face crops from face video probes for low-resolution datasets. We present
the preparation of training and test probes from BRIAR dataset[6] here. First, a detection algorithm is applied to find
bounding boxes of the face and landmark coordinates. Next, the landmark points are aligned and a 112 x 112 crop is
extracted. Finally, the crop is expanded to dimension 180 x 180 and then resized to 120 x 120 for fine-tuning. While smaller
crops may miss relevant details in the faces, enlarging the crops captures more details.

these masked portions to derive meaningful representations
of the image. However, for facial recognition tasks, because
of the availability of large scale open source labelled datasets,
we opt for supervised pre-training instead. This decision is
driven by two main factors: (1) Face images are typically
smaller when compared to natural domain images, with
dimensions of only 112 x 112 for public datasets. (2) While
MAE:s excel in reconstructive tasks, the features they learn
are not inherently discriminative. Hence to learn better
discriminative features, we choose supervised pre-training as
the first step of the pre-training process. Moreover, given
the challenges posed by low-quality face recognition, where
the input test images have drastically different quality and
lighting conditions compared to the pre-training images, low-
quality face recognition can also be treated as a domain
adaptation problem. Previous studies[15] have shown that for
domain adaptive tasks, supervised pre-training is more ef-
fective than self-supervised and loss-based techniques. Thus,
we choose supervised pre-training as the first stage of our
training process.

Stage 1: Supervised Pre-training; we pre-train a Swin
Transformer backbone with a large-scale pre-training
dataset. For face recognition, supervised pre-training
presents a particular challenge when followed by a fine-
tuning stage. Typically, datasets used for fine-tuning in low-
range face recognition are quite small, often containing only
a few hundred identities. In face recognition networks, the
final layer is an MLP layer (classification head) designed to
perform classification tasks. Once the network is pre-trained,
this final layer is discarded. A new classification head needs
to be appended to the pre-trained backbone to adapt the pre-
trained backbone for a smaller dataset. This newly added
classification head is initialized with random weights at the
beginning of the fine-tuning process.

Consider the fine-tuning process where the entire network,
including the classification head, is fine-tuned from scratch.
During the first iteration of inference, the MLP head en-
counters reasonable features; however, due to its random ini-
tialization, it produces random outputs. Furthermore, during
the initial phases of backpropagation, a significant portion
of the pre-trained weights undergoes alteration. Hence, one
might have to fine-tune with an extremely low learning rate
to prevent the loss of pre-trained weights. To prevent this

forgetting of weight space often referred to as catastrophic
forgetting [19], we employ a two-stage fine-tuning process.
In the first step, we perform linear probing by training only
the MLP head for a limited number of epochs. This allows
the MLP head to align with the input features from the pre-
training backbone and effectively classify different identities
in the fine-tuning dataset. Once this step has converged,
further training integrates the adjusted MLP head with the
overall network.

Stage 2: Linear Probing [1], we fine-tune on a low-
resolution dataset by performing linear probing. During the
full fine-tuning process, two critical details must be consid-
ered: (1) pre-training datasets are typically large, encompass-
ing millions of identities, and (2) fine-tuning datasets usually
contain only a few hundred identities. Therefore, if one were
to fine-tune the entire model for large number of epochs,
catastrophic forgetting could occur. Due to this, the features,
initially learned to discriminate among millions of identities
might be overwritten to fit to just a few hundred, causing
the network to lose its generalization capability. Additionally,
low-resolution datasets contain very diverse images with
significant variations in lighting conditions, image resolution,
and image quality. If one were to use a large batch size for
gradient updates, this variation would be averaged out to a
large extent. Thus, we opt for a smaller batch size during fine-
tuning. Furthermore, to prevent catastrophic forgetting [19],
we restrict training to a limited number of iterations and
maintain a low learning rate.

Stage 3: Full fine-tuning for a small number of iterations
with a small batch size and low learning rate. We illustrate
the overall training process in Figure 3. Initially, we perform
supervised pre-training on the transformer backbone using a
dataset of million-scale identities. Subsequently, we employ
linear probing to align the MLP head with the smaller
dataset. Finally, we fine-tune the entire model on the low-
resolution dataset for a small number of training iterations,
utilizing a small batch size and a low learning rate.

2) Design choice: Bigger fine-tuning crops: Traditionally,
face recognition has been performed using 112 x 112 crops,
because meaningful discriminative features can be extracted
from these regions for clear faces. However, as shown in
the 4, most faces in low-resolution datasets do not retain
these features, leading to a scenario where even humans



might struggle to distinguish between different faces due
to significant blurring of facial regions. Furthermore, while
some previous works have suggested that discarding ex-
tremely hard samples during the training process can enhance
performance [37], this is often impractical in low-range face
recognition due to the small size of the training datasets.
This is because discarding images could reduce the dataset
to just a few hundred images, which is insufficient for
effective training. Hence, we adopt an alternative approach.
Before presenting our solution, it is crucial to understand
the common challenges in low-quality face recognition as
depicted in Figure 4. In low-quality face recognition, the
dataset often includes images/videos of scenes captured
from a significant distance from the subjects. An off-the-
shelf detector is employed to crop faces from these broader
scene, which are then processed through a facial recognition
system. In our case, however, we take advantage of having
access to the entire scene, allowing for additional contextual
information to be utilized.

Hence, rather than restricting our method to a crop size of
112 x 112 as existing methods do, we opt for bigger crops
of 180 x 180. These bigger crops capture the entire head
and hair outline of a person. Such regions can potentially
reveal additional descriptions about the person, such as the
head shape, hair color, gender, hairline, ear shape, etc., which
may not have been present in the pre-training dataset. We
observed a significant boost in performance by including
these additional features utilizing the larger crop size. To
accommodate the larger crops during fine-tuning, we resize
the input images and pre-train at a size of 120 x 120, an
increase from the traditional 112 x 112. The bigger crop
size, while fine-tuning, allows for a slight enlargement of the
head in the images. The initial resolution of 180 was chosen
since this resolution captures the enlarged the whole head
shape without including much background details. Moreover
resizing the 180 x 180 crops to 120 x 120 allows to retain
almost same amount of information in the crops while
reducing the memory overhead by a factor of 2.4 because
of quadratic memory complexity in transformers.

We ensure that the cropped face aligns well while fine-
tuning by utilizing new landmark alignment coordinates.
These new coordinates are chosen such that the center of the
image, i.e., the nose portion of the face, aligns between the
fine-tuning and pre-training datasets. In order to prevent the
effect of warping and upscaling artifacts, we don’t perform
any upscaling of the newly cropped face; instead, we expand
the borders along the crop to get additional features.

Step 2: During fine-tuning, we utilize larger crops of size
180 x 180, capturing the whole head of the person.

3) Design choice: Dropout in penultimate layer: We
discovered that including dropout during pre-training serves
as a major enabler for adaptation performance when fine-
tuned on a smaller out-of-distribution dataset. We detail these
findings in the experiments section, where we compare a
Swin Transformer [21] backbone trained with and without
dropout, subsequently fine-tuned on a low-resolution dataset.
Our experiments reveal that although utilizing dropout brings

almost no difference in the performance of the pre-trained
models, the performance over low-quality datasets after fine-
tuning gains a significant boost when the model is pre-
trained with dropout on the penultimate layer compared to
its counterpart.

Step 3: Step 3: During pre-training, we include dropout
in the penultimate layer, which leads to a boost in perfor-
mance after fine-tuning.

4) Design choice: Annealing-based scheduler: The prob-
lem of local optima is well researched in the deep learn-
ing community[20], [2], [18], [23]. Multiple works have
proposed different variants of optimizers and learning rate
schedulers [20] separately designed to work well for CNNs
and transformers [9], [21]. The choice of optimizer and
schedulers is crucial to ensure that during the optimization
process, the model does not get stuck at local optima
and the training process occurs smoothly. In the case of
face recognition, Multiple works have previously found that
for ResNet-based architectures, stochastic gradient descent
is the best-suited optimizer, and AdamW [18] to be the
best working for transformer-based backbones [9], [21].
Regarding the choice of learning rate scheduler, recent face
recognition methods employ a Polynomial Decay Scheduler
with a warmup phase [28].

During our experiments, we found that using a polynomial
decay scheduler with a warmup during the pre-training phase
for the Swin architecture leads to the model outputting sub-
optimal results. Upon further analysis, we identified that the
learning rate decreased significantly, reaching a very low
value at nearly half the total number of iterations. This causes
the model to become stuck at a local optimum, from which
it struggles to recover and achieve optimal performance. To
address this issue, we propose a modification: the use of
annealed optimizers [22]. A particularly effective choice is
the Cosine Annealing scheduler. In our work, we designed an
annealed Poly optimizer that resets the learning rate to half of
its initial value at the mid-stage of the training process. The
use of such an annealed training process leads to a significant
boost in performance as detailed in the experiments section.
Additionally, we experimented with a multi-step LR strategy
similar to that in AdaFace [16]. However, we found that
without a warmup phase, the Swin Transformer encounters
convergence issues in face recognition training, rendering
this approach impractical.

Step 4: During pre-training, we employ a Polynomial decay
scheduler with a warmup phase and perform annealing at
the mid-stage of the training process.

II. EXPERIMENTS
A. Implementation Details

All our experiments are conducted on 8 NVIDIA A5000
GPUs. As mentioned before, we employ a Swin transformer
backbone [21] as our recognition network. The choice of
the Swin transformer, along with other reasons mentioned in
previous sections, is due to its best out-of-distribution (OOD)
generalization capability compared to other transformer-
based backbones. Instead of using the publicly available Swin



Method ‘ Dataset ‘ Architecture ‘ BB ‘ LBC ‘ AgeDB CALFW  CFP-FF CFP-FP CPLFW LFW
| | | e5 e-4 e3 | e5 e-4 e3 |
ArcFace [7] WbF4M R-50 89.62 94.02 96.15 93.61 95.99 97.48 96.81 95.71 99.75 96.71 93.41 99.66
CosFace [33] WbF4M R-50 89.70  94.09 96.22 93.57 96.01 97.53 96.88 95.63 99.70 96.82 93.28 99.68
AdaFace [16] WbF4M R-50 90.78 9495 96.68 90.61 94.70 96.67 97.26 95.98 99.81 97.14 93.81 99.78
ArcFace [7] WbF4M ViT-B 89.81 9491  96.70 94.33 96.64 97.84 97.53 95.91 99.80 97.22 93.68 99.81
CosFace [33] WbF4M ViT-B 90.76  95.18  96.94 94.67 96.87 98.09 97.51 95.95 99.87 97.30 94.31 99.73
AdaFace [16] | WbF4M ViT-B 8991 9490 9671 | 9404 9652 9791 96.85 95.71 99.80 97.00 93.75 99.76
AdaFace [16] | WbF4M R-101 9227 9569 97.09 | 9534  97.09 98.07 97.85 96.01 99.88 97.21 94.21 99.75
AdaFace [16] | WbFI2M ViT-B 92.17 96.10 97.25 | 96.01 97.59  98.31 98.18 95.93 99.85 97.47 94.65 99.83
AdaFace [16] | WbFI2M R-101 93.14 9630 9730 | 9594 9754 98.24 98.01 96.00 99.81 97.47 94.30 99.78
OURS WbF4M Swin-B 90.99 9541 97.09 | 94.68 96.99  98.09 97.76 95.88 99.81 96.74 93.61 99.75
OURS WbF12M Swin-B 93.16  96.27 97.48 96.31 97.70 98.46 98.35 96.03 99.87 97.57 94.66 99.78
OURS WbF42M Swin-B 9427 96.71 97.58 | 97.11 98.01 98.54 98.38 96.13 99.90 97.70 94.98 99.78

TABLE I: ROC values for face recognition on the IJB-B and IJB-C datasets at different TAR@FAR thresholds. Face
verification accuracy on high-quality datasets such as AgeDB, CALFW, CFP-FF, CFP-FP, CPLFW, LFW.

Method | Dataset | Arch. | e-4 e3 e-l | Rank-1 Rank-5 Rank-20
ArcFace [7] WbF4M R-50 23.60 3642 52.60 45.53 54.56 65.13
CosFace [33] ‘WbF4M R-50 2255 3543 5220 45.43 54.54 65.13
ViT(CosFace) [9] ‘WbF4M ViT-B 3478 4720 62.50 55.59 63.44 72.76
Adaface [16] ‘WbF4M R-101 2432 3528 5234 51.28 59.11 67.77
Adaface [16] WbF12M R-101 26.82 3941 56.84 51.94 59.53 68.78
CAFace [17] ‘WbF4M R-101 3341 4195 5131 - - -
CONAN [13] ‘WbF4M R-101 36.52  46.14  56.32 - - -
OURS ‘WbF4M Swin-B | 40.37 59.29  79.04 70.35 79.76 88.22
OURS WbFI2M | Swin-B | 54.50 70.84 86.93 79.60 87.00 92.27
OURS WbF42M | Swin-B | 55.73  72.69 87.45 81.38 87.87 92.48

TABLE II: Quantitative metrics for face recognition on the
BRIAR dataset [6]. We evaluate using the ROC values at
different TAR@FAR thresholds as well as CMC scores.

Method | Dataset | Architecture | Rank-1 Rank-5 Rank-10
ArcFace [7] ‘WebFace4M ResNet-50 73.04 76.85 79.45
CosFace [33] ‘WebFace4M ResNet-50 72.71 76.36 78.99
ArcFace [7] ‘WebFace4M ViT-B 74.08 77.19 79.10
CosFace [33] ‘WebFace4dM ViT-B 72.74 76.28 78.13
AdaFace [16] | WebFace4dM ViT-B 74.03 7722 79.37
Official reported numbers
Adaface [16] ‘WebFace4dM ResNet-101 72.02 7451 76.58
Adaface [16] | WebFacel2M ResNet-101 72.31 74.97 76.87
Reproduced results with our alignment
Adaface [16] WebFace4M ResNet-101 74.75 71.52 79.50
Adaface [16] | WebFacel2M ResNet-101 75.13 717.65 79.31
Finetuned on TinyFace
ArcFace [7] WebFace4M ViT-B 69.20 7491 78.94
CosFace [33] WebFace4M ViT-B 71.08 76.09 79.42
AdaFace [16] WebFace4M ViT-B 42.59 50.69 57.00
AdaFace [16] | WebFacel2M ViT-B 42.40 51.01 57.75
AdaFace [16] WebFace4M ResNet-101 68.53 74.59 78.46
AdaFace [16] | WebFacel2M ResNet-101 68.72 75.08 78.62
OURS WebFace4M Swin-B 74.94 78.08 80.52
OURS WebFacel12M Swin-B 77.46 80.12 82.10
OURS WebFace42M Swin-B 77.38 79.96 81.46

TABLE III: Quantitative metrics for face recognition on the
TinyFace dataset [5]. We evaluate using the CMC scores.
Adaface-ft are results obtained after fine-tuning Adaface.

Transformer backbone, which is configured for a resolution
of 224 x 224, we train a new backbone from scratch at
a resolution of 120 x 120 for the WebFace4M [38] and
WebFacel2M datasets. We perform downsampling twice.
The overall depth across different layers is [4,4,14]. We
utilize a patch size of 9 x 9 and a window size of 5 across
all models. The trained models have a hidden embedding
dimension of 256. We use a batch size of 128 for training the
models. For all the models, we use AdamW optimizer [23]
with a learning rate of 0.001 and a Polynomial Scheduler
with warmup and annealing [28], [22]. We implement partial-

Rank-20 e-3

Rank-5 e-1

Rank-1

== ArcFace
CosFace

=== ViT(CosFace)
= Adaface(WbF4M)

Adaface(WbF12M)
=== OURS(WbF4M)

OURS(WbF12M)
== OURS(WbF42M)

Fig. 5: Results on BRIAR dataset [6]

fc with a sample rate of 0.3 to increase the batch size
while training our models. In the pre-training stage, the
WebFace4M models are trained for 26 epochs with a warmup
of 1 epoch. The WebFacel2M models undergo training for
20 epochs with a warmup of 1 epoch. For fine-tuning, we
implement a two-stage process. For the BRIAR [6] dataset,
in the first stage of linear probing, we utilize a learning rate
of 1e73 and a batch size of 512. In full fine-tuning stage,
the batch size is set to 8 per GPU with a learning rate of
5e~C. In both stages, we train for 10 epochs with 2 warmup
epochs. For the TinyFace [6] dataset, in the linear probing
stage, we utilize a learning rate of 1le~3, a batch size of 128
and implement partial-fc with sample rate of 0.6. We train
the model for 10 epochs with 2 warmup epochs. In the full
fine-tuning stage, we train the model for 40 epochs with a
warmp up of 4 epochs, a batch size of 8 per GPU, and a
learning rate of 5e.

B. Testing Protocols

We organize our experiments into two protocols to high-
light the efficacy of our architectural design choices and
fine-tuning procedure. In Protocol 1, we evaluate mod-
els pre-trained on WebFace4dM, WebFacel2M and Web-
Face42M [38], showcasing the superiority of our pro-
posed architectural design choices. We perform the compar-
ison on mixed-quality datasets, [JBB [35] and IJBC [25]
for TAR@FAR = 0.001%, TAR@FAR = 0.01%, and



TAR@FAR = 0.1%, to demonstrate our models’ enhanced
performance. In Protocol 2, we assess the performance of
the models fine-tuned on TinyFace (Train set) and BRIAR
using the procedure described in Section II-B. This protocol
emphasizes the effectiveness of the proposed fine-tuning
procedure and points out the shortcomings of existing models
that cannot be adapted to other low-quality datasets. We
employ low-quality datasets such as TinyFace [5], IJBS [14],
and BRIAR [6] for comparison. For BRIAR and TinyFace,
we report the rank-1, rank-5 and rank-20 CMC scores along
with the TAR at different FAR thresholds. For 1JB-S, we
report open-set TPIR@FPIR=1%/10% and closed-set rank
retrieval (Rank-1, Rank-5 and Rank-10). CMC scores are
used to evaluate the performance of identification systems
and represent the probability that the correct match of an
individual’s face sample is found within the top N candidates
provided by the system.

IV. RESULTS AND ANALYSIS

This section summarizes the results of the experiments
we perform to evaluate the proposed fine-tuning procedure.
As discussed in Section III-B, we evaluate the proposed
approach using two protocols. For evaluations, we train trans-
former based models from scratch and perform quantitative
analysis with it. Although Insightface has proposed results
from different models with ViT backbone, these models are
not released.

Protocol 1: In this protocol, we present the results on mixed-
quality datasets IJB-B and 1JB-C, as shown in Table I. When
trained on the WebFace42M dataset, our model achieves a
True Acceptance Rate (TAR) of 94.27, 96.71, and 97.58 for
IJB-B, and 97.11, 98.01, and 98.54 for IJB-C at False Accep-
tance Rates (FAR) of 0.001%, 0.01%, and 0.1%, respectively.
With the WebFace12M and WebFace4M training dataset, the
TARs are 93.16, 96.27, 97.48, and 90.99, 95.41, 97.09 for
IJB-B, and 96.31 97.70, 98.46 and 94.68, 96.99, and 98.09
for IJB-C at similar FAR thresholds. We observe that our
proposed architectural design choices enhances performance
with increase in dataset size which is not the case for the
current SOTA model. Additionally, we see that the proposed
architectural design choices deliver competitive performance
while requiring significantly less training time (4 x less). The
results detailed in Table I demonstrate that the proposed
architectural choices lead to stable training and consis-
tent model convergence. Moreover, these choices optimizes
GPU memory usage, enabling training with larger batches
and easily scaling to large datasets. Notably, our approach
achieves state-of-the-art (SOTA) performance on the IJB-
B and IJB-C benchmarks. Our model, based on the Swin-
B architecture and trained on WebFace4M, WebFacel2M,
and WebFace42M, achieves exceptional face verification
accuracy on high-quality datasets, as demonstrated in Table I,
reaffirming the efficacy of our design choices.

Protocol 2: The results of Protocol 2 are summarized in
Table II, Table III and Table IV. In Table II, we observe that
the proposed fine-tuning procedure results in a significant
improvement of approx. 13% (on avg.) over CONAN [13]

at various thresholds when trained on WebFace4M dataset.
When compared with current SOTA models trained on
the WebFacel2M dataset for face recognition, our model
outperforms previous baselines by a staggering 30% (on
avg.) improvement at various thresholds, along with a 26
point increment in the CMC scores. Our model trained on
WebFace42M establishes a new SOTA, achieving a TAR of
55.73%, 72.69%, and 87.45% at FAR of 0.01%, 0.1%, and
1%, respectively. The Rank-1, Rank-5 and Rank-20 retrieval
accuracies are 81.38%, 87.87%, and 92.48%, respectively.

Full fine-tuning of a model often leads to catastrophic
forgetting, as can be seen in the case of AdaFace when fine-
tuned on TinyFace (see Table III, rows 8 and 9). In contrast,
our method achieves superior performance on the TinyFace
dataset, with Rank-1, Rank-5, and Rank-10 accuracies of
77.46%, 80.12%, and 82.10%, respectively. This outperforms
the second-best method, AdaFace, which obtains accuracies
of 75.13%, 77.65%, and 79.31%. These results highlight
the effectiveness of our two-step fine-tuning procedure for
transferring to low-resolution data. Furthermore, our design
enables the model to scale and improve as the dataset size
increases. Specifically, the Rank-1 accuracy of our method
improves by 2.52% when scaling the dataset from 4M to
12M, while AdaFace shows a marginal increase of just
0.38%. Notably, when further scaling to the WebFace42M
dataset, our model continues to excel, achieving Rank-1,
Rank-5, and Rank-10 accuracies of 77.38%, 79.96%, and
81.46%, respectively.

As discussed earlier, full fine-tuning often leads to catas-
trophic forgetting, resulting in a significant drop in perfor-
mance. We portray these results in Table III. As we can
see, for all comparison methods, a naive full fine-tuning
process leads to a performance drop whereas including out
alignment technique results in a boost of performance. The
catastrophic forgetting happens particularly when adapted
for specific settings like low-resolution or surveillance-
quality data. The results on the IJB-S dataset, presented
in Table IV, validate this point, showing an average drop
of 30% in CMC scores. This highlights the efficacy of
our proposed two-step fine-tuning procedure. We evaluate
the models fine-tuned on the BRIAR train set, on IJB-
S as both contain surveillance-quality videos. Notably, our
model shows a substantial improvement in the Surveillance-
to-Surveillance setting compared to other settings, aligning
with its fine-tuning focus. However, the model trained on
WebFace4M underperforms in the Surveillance-to-Single and
Surveillance-to-Booking settings, likely due to its limited
ability to extract discriminative features for enrollment im-
ages. Nevertheless, this limitation can be mitigated by scaling
the pre-training dataset size, which our architectural design
effectively accommodates. As seen in Table IV, the perfor-
mance improves significantly when the pre-training dataset
is scaled from WebFacedM to WebFacel2M. Specifically,
the Rank-1 accuracy increases from 43.68% to 57.42% in
the Surveillance-to-Single setting, from 50.14% to 61.84%
in the Surveillance-to-Booking setting, and from 42.94%
to 49.22% in the Surveillance-to-Surveillance setting. Ad-



Method | | Surveillance to Single

Surveillance to Booking Surveillance to Surveillance

Dataset

| | Rank-1 ~ Rank-5  Rank-10 1% 10% | Rank-1 ~ Rank-5 Rank-10 1% 10% | Rank-1 ~ Rank-5 Rank-10 1% 10%
ArcFace [7] ‘WebFace4M 31.88 45.01 50.38 1512 2332 | 4146 52.39 58.24 19.94 2979 34.58 50.71 55.68 3.61 8.71
CosFace [33] WebFace4M 32.01 45.72 51.25 16.14  25.18 43.82 55.75 61.28 20.02  30.90 33.62 49.40 54.92 3.67 9.09
ViT(CosFace) [9] | WebFace4M 45.54 55.64 60.49 2848 39.83 55.96 65.75 70.38 3259 4654 38.88 52.93 56.58 5.40 14.83
Adaface [16] WebFace4M 46.89 54.30 58.85 27.38 3837 52.65 60.54 65.09 2920 4222 36.95 51.94 57.34 4.14 9.97
Adaface [16] WebFace12M 47.23 55.78 60.43 13.73  35.03 53.87 62.95 67.58 21.58 4159 37.86 5243 57.66 4.49 10.73

Pre-trained models
OURS WebFace4M 46.52 55.78 59.83 2748  39.07 53.71 63.56 68.48 3136 4275 40.43 55.15 58.92 5.11 11.83
OURS WebFace12M 51.15 58.95 62.97 3632 46.09 60.09 68.21 71.60 4156  52.54 42.82 55.94 59.77 5.66 13.47
OURS WebFace42M 52.97 61.41 66.52 37.08 45.88 63.87 72.00 75.60 4554 56.02 44.69 56.29 59.68 5.37 14.38
Full finetuning of models

OURS ‘WebFace4M 14.97 26.30 32.78 3.70 8.68 18.76 30.53 36.96 5.01 10.38 43.00 55.24 58.95 10.89  28.07
OURS WebFace12M 25.03 37.04 43.45 8.27 17.79 28.07 42.31 49.72 10.61 19.55 46.21 57.05 60.21 1429 3352
OURS WebFace42M 26.67 36.72 42.97 990  19.02 31.48 46.83 52.92 9.98 20.51 44.25 55.36 59.68 12.99  32.70
OURS ‘WebFace4M 43.68 56.94 63.21 19.40 3222 50.14 64.32 69.33 22.14 3539 42.94 54.80 58.63 17.80  32.92
OURS WebFace12M 57.42 67.63 71.63 3486 47.82 61.84 72.71 77.16 36.11 4937 49.22 58.86 61.61 2349 3991
OURS WebFace42M 59.72 68.48 72.47 3251 5219 | 63.00 73.59 77.63 37.06  53.67 | 50.68 59.10 61.81 2371  40.71

TABLE IV: Quantitative metrics for face recognition on the IJB-S dataset[14] under three settings - Surveillance-to-Single,
Surveillance-to-Booking and Surveillance-to-Surveillance. We evaluate using the TPIR@FPIR=1%/10% values as well as
CMC scores. For both these metrics , higher the value better the result.

Arcface  Cosface 180  Dropout  Optimizer | Rank-1 ~ Rank-5 Rank-20 |
v v v v 64.12 74.77 85.00

v v v v 66.00 76.35 85.97
v v v 33.73 45.88 62.26
v v v 33.31 46.74 61.04
v v v 61.32 73.33 83.78

TABLE V: Ablation Analysis: Analyzing the impact of

different design choices on face recognition performance.
ditionally, when further scaling the pre-training dataset to

WebFace42M, we observe even greater improvements, with
Rank-1 accuracies reaching 59.72%, 63.00%, and 50.68%
in the Surveillance-to-Single, Surveillance-to-Booking, and
Surveillance-to-Surveillance settings, respectively. These re-
sults demonstrate that our fine-tuning approach and model
design can effectively leverage larger datasets, enhancing
performance in unconstrained face recognition tasks.
Protocol 3. We choose high-quality benchmarks as Protocol
3. We want to highlight that our training process is bene-
ficial in high-quality face recognition as well. For this, we
experiment we evaluate our pretrained model at a resolution
120 x 120 with the proposed training settings in Section II.
Please note that for high-quality fine-tuning datasets, we do
not perform any fine-tuning other than the pertaining process.
We present the results in six high-quality datasets in Table
1. As can be seen, our 42M model achieves state-of-the-art
results for 5 out of the 6 datasets and achieve very close
to SOTA performance in the sixth dataset. Moreover, it can
be seen as well that scaling up the pertaining dataset size is
beneficial for high-quality face recognition as well.

V. ABLATION STUDY

We demonstrate the impact of various design choices
on performance in Table V. We observe that the effect of
loss functions on model performance is relatively small (see
Table V, rows 1 & 2), compared to other design choices.
A larger crop size of 180 x 180 during fine-tuning, along
with the addition of dropout in the penultimate layer, are the
two design choices that significantly boost performance. The
experiments for the ablation study were conducted using a
smaller Swin Transformer model on the BRIAR [6] dataset
to amplify the importance of different design choices during
training on performance.

Large crop-size of 180 x 180: We fine-tune the model on
low-quality dataset using larger crops of size 180 x 180,
thereby including additional information about the identity,
such as head shape, hair color, ear etc. We observe that
the inclusion of such information significantly improves the
Rank-1 accuracy from 33.73% to 64.12%.

Effect of dropout in the penultimate layer: The inclusion
of dropout in the penultimate layer enables the model to bet-
ter adapt to smaller, low-quality, out-of-distribution dataset.
Excluding dropout during training results in a significant
drop in model performance on low-quality datasets, with
Rank-1 accuracy dropping from 64.12% to 33.31%. This
highlights the critical importance of our design choice for
improved transfer to low-resolution data.

Optimizer choice - AdamW with annealed polynomial
scheduler: To address local minima during training, we
implemented an annealing-based polynomial scheduler that
resets the learning rate mid-training, to help the model
in escaping local minima and enhancing performance. As
shown in Table V, adding AdamW along with annealed
polynomial scheduler leads in a performance jump of 2.8%,
increasing the Rank-1 accuracy from 61.32% to 64.12%.

VI. CONCLUSION

Previous efforts in face recognition have revolved around
margin-based and adaptive loss functions that fail to pro-
duce discriminative features robust enough for low-quality,
unconstrained face recognition. Diverging from the current
trend, in this paper, we demonstrate that conscious data
and architectural design choices, coupled with a two-step
fine-tuning procedure, provides a significant boost over
the current state-of-the-art. We show that our architectural
choices result in the least training time and enables scaling
to large, million-scale datasets. We ablate each of our choices
and highlight the importance of each component within
the training framework. Through extensive experiments on
mixed-quality (IJB-B and IJB-C) and low-quality datasets
(TinyFace, IJB-S and BRIAR), we showcase the superiority
of our proposed architectural design choices and two-step
fine-tuning procedure.



VII. ETHICAL IMPACT STATEMENT

In this research, we have carefully addressed the ethical
implications surrounding face recognition technology,
particularly focusing on issues of privacy, surveillance, and
potential biases. Our model was trained on publicly
available datasets: WebFace4dM, WebFacel2M, and
WebFace42M [38], acquired through signing the official
license agreement. For benchmarking, we utilized 1JB-
B [35], IIB-C [25], IJB-S [14], BRIAR [6], and TinyFace [5],
which contain diverse, mixed-quality, and low-resolution
images from real-world settings. These datasets were
obtained through official repositories and websites, ensuring
adherence to ethical standards. Informed consent for
publication was acquired for all subjects depicted in the
paper, supporting ethical data use.

This research offers significant benefits within authorized
security contexts, where accurate low-resolution face
recognition enhances identification capabilities in
challenging environments. When applied responsibly,
these advancements contribute to security and enable
legitimate monitoring efforts. Importantly, the model’s
design and training process adhere to standards that do
not introduce risks beyond those inherent in traditional
face recognition systems. However, we acknowledge the
potential for misuse in unauthorized surveillance, profiling,
or privacy infringements if deployed outside controlled,
ethical frameworks. Our work aims to support face
recognition for responsible use within authorized security
settings, while recognizing that unintended applications
or misinterpretations could lead to societal issues, such
as privacy erosion or biased treatment of certain groups.
By proactively addressing these considerations, we seek to
mitigate risks associated with the model’s deployment and
advocate for ethical oversight to prevent misuse.

Ethical considerations for human subjects and data usage
were fully respected. This research relies solely on existing
datasets and no new consent was required. These datasets are
approved for research use, ensuring adherence to ethical data
standards. No individuals were recruited which eliminates the
need for compensation. The datasets do not predominantly
include vulnerable populations, such as minors, elderly in-
dividuals, or other at-risk groups, instead representing a
standard demographic spectrum. Given our commitment to
ethical standards, this research presents minimal risk to
individuals while advancing low-resolution face recognition
technology.

VIII. ETHICAL IMPACT CHECKLIST

1) Yes, we read the Ethical Guidelines document.

2) Yes, it is approved by a valid ethical review board.

3) Yes, the ethical impact statement discusses the potential
risks of individual harm and negative impacts associated
with the research.

4) Yes, we advocate for ethical oversight as risk-mitigation
strategy to prevent misuse of the proposed research.

5) Yes, the benefits and potential positive impact out-
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weighs the potential risks of the proposed low-resolution
face recognition model.

a) Yes, informed consent was obtained for publication
and is mentioned in the main paper.

b) No, but we state in the ethical impact statement
that we use publicly available datasets collected in
adherence to ethical data use standards.

¢) No, we mention in the ethical impact statement that
no individuals were recruited, eliminating the need
for compensation.

d) No, the study does not involve special or vulnerable
populations. The datasets do not predominantly in-
clude any special populations, and instead represent
a standard demographic spectrum.
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