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ABSTRACT Coronavirus disease (COVID-19) is one of the world’s most challenging pandemics, affecting
people around the world to a great extent. Previous studies investigating the COVID-19 pandemic forecast
have either lacked generalization and scalability or lacked surveillance data. City administrators have
also often relied heavily on open-loop, belief-based decision-making, preventing them from identifying
and enforcing timely policies. In this paper, we conduct mathematical and numerical analyses based on
closed-loop decisions for COVID-19. Combining epidemiological theories with machine learning models
gives this study a more accurate prediction of COVID-19’s growth, and suggests policies to regulate it.
The Susceptible, Infectious, and Recovered (SIR) model was analyzed using a machine learning model to
estimate the optimal constant parameters, which are the recovery and infection rates of the coupled nonlinear
differential equations that govern the epidemic model. To modulate the optimized parameters that regulate
pandemic suppression and mitigation, a systematically designed feedback-based strategy was implemented.
We also used pulse widthmodulation tomodify on-off signals in order to regulate policy enforcement accord-
ing to established metrics, such as infection recovery ratios. It was possible to determine what type of policy
should be implemented in the country, as well as how long it should be implemented. Using datasets from
John Hopkins University for six countries, India, Iran, Italy, Germany, Japan, and the United States, we show
that our 30-day prediction errors are almost less than 3%. Our model proposes a threshold mechanism for
policy control that divides the policy implementation into seven states, for example, if Infection Recovery
Ratio (IRR) >80, we suggest a complete lockdown, vs if 10<IRR<20, we suggest encouraging people to
stay at home and organizations to work at 50% capacity. All countries which implemented a policy control
strategy at an early stage were accurately predicted by our model. Furthermore, it was determined that the
implementation of closed-loop strategies during a pandemic at different times effectively controlled the
pandemic.
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I. INTRODUCTION25

Human populations have been affected by communicable26

diseases since ancient times [1]. Two of the most ancient27

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiqi Liu .

and deadly diseases of humanity, tuberculosis and malaria, 28

ravaged Ancient Egypt for more than 5,000 years and are still 29

a major health problem today [2]. In 2009, a new A/H1N1 30

influenza virus emerged, causing the first global pandemic 31

in 40 years [3]. Within the first two months of the out- 32

break, the disease had spread to more than 70 countries 33
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with more than 30,000 confirmed cases [4] thereby adversely34

impacting human lives. Despite two years of pandemic preva-35

lence, people are still adapting to its after effects. As of36

May 28, 2022, there had been 8.5 million confirmed cases37

and more than 1 million deaths in the United States (US)38

alone [5]. COVID-19 is one of the many communicable dis-39

eases that threaten us to this day, despite all the techno-40

logical advances. Also, the findings in [6] suggest that the41

resurgence of the virus, resulting in the second wave, may42

be attributable to an incongruous behavior on the part of43

Italian residents in following recommended health measures,44

despite government-run preventive programs. It is obvious45

that there is a pressing need to take action against global pan-46

demic, which requires non-pharmaceutical interventions such47

as social distancing, testing, and contact tracing, as well as48

pharmaceutical research, which includes designing vaccines49

and studying the protein that can contain the virus [7].50

In order to study the epidemics, a variety of mathematical51

models have been proposed, which includes studies on Sus-52

ceptible, Infected, Recovered (SIR), Susceptible, Exposed,53

Infected, Recovered (SEIR), and others [8]. These study54

model to stabilize and diminish the rate of propagation of55

a communicable virus in the event of a pandemic outbreak.56

However, these models are simple, which makes it easy to57

calculate, it likely oversimplifies complex disease processes58

such as Covid-19 due to its simplicity [9]. Many data scien-59

tists and health specialists have faced the challenge of mod-60

eling the COVID-19 outbreak and related projections for the61

number of infected cases, deaths, and recovered cases [10].62

Consequently, experts in epidemiological modeling have dif-63

ficulty predicting COVID-19’s future [11]. Furthermore, it is64

shown epidemiological modeling is not usually viewed from65

an engineering perspective, which is why we think public66

officials might greatly benefit from one and better manage67

this deadly disease. On the other hand, the use of Artificial68

Intelligence and Deep Learning methods [12] for modeling69

numerous types of epidemic communicable diseases in dif-70

ferent application scenarios has increased in recent years,71

making it very difficult for specialists to determine which of72

these models to use for prediction [13].73

In the light of the recent pandemic, techniques have been74

proposed for managing public health strategies [14], [15],75

thereby focusing on implementing control measures to keep76

the reproduction rate (R0) [16] below 1. Mitigation, which77

focuses on slowing the pandemic spread, and suppres-78

sion, which focuses on reversing growth, are the two basic79

approaches to control the spread of a pandemic [17]. This80

generally relies on keeping the pandemic (R0) below a81

specific value and is typically done by enforcing policies82

such as social distancing. One technique for implementing83

social-distancing measures is an on-off approach, where city84

officials relax some restrictions when the number of new85

cases requiring intensive care is below a threshold, tightening86

them otherwise. However, these officials generally resort to87

an open loop, principle-based decision-making process [18],88

thereby struggling to identify the optimal policy at the right89

time. This can have the unintended consequences of causing 90

economic activities to plummet, thereby putting millions of 91

jobs at risk. The aim of this work is to assist city officials in 92

making data-informed decisions to keep people safe, while 93

sustaining economic activities during any pandemic outbreak. 94

This work addresses how effectively we can modulate and 95

manage public health policies by developing hybrid models 96

which are not just purely data-driven, but are also based on 97

control feedback and time based monitoring of the country. 98

Furthermore, how can we measure the pandemic contagious- 99

ness using novel threshold mechanism to control the pan- 100

demic. In our research, we explored how feedback can help 101

stabilize and slow the progression of this deadly viral infec- 102

tion. Using engineering principles, we have come up with 103

a practical approach to provide policymakers with concrete 104

guidance, one that takes both medical and socioeconomic 105

factors into account. We relied on feedback-based strategies 106

to control the outbreak and manage the longer-term caseload 107

effectively. The goal of this paper is to develop a fundamen- 108

tal understanding of interventions’ impacts on the pandemic 109

spread and their ability to forecast its progression. We present 110

a novel data-based modeling approach that is equally effi- 111

cient in controlling and suppressing the spread of viruses. 112

In this study, we address the following challenges: (1) how 113

to evaluate public health policies using models that are not 114

only data-driven, but also based on control feedback strat- 115

egy, and (2) how can we calculate the Infection Recovery 116

Ratio (IRR) to assess the contagiousness of the pathogens 117

as explained in [19]. (3) how can we analyze the best-fit 118

model for predicting the COVID-19 outbreak using different 119

analytical techniques. This work addresses these issues and 120

provides the following contribution: 121

• In this study, a SIR model is employed to investigate 122

COVID-19’s behavior. The machine learning model is 123

used to optimize both infection rates and recovery rates. 124

• The proposed IRR is used to guide city officials on 125

which policies to implement at what stage. 126

• Additionally, we use a modulated control signal and a 127

linear time-invariant transfer function to optimize the 128

duty cycle and the width of the on-off signals for policy 129

control. This model presents an enumeration of IRR val- 130

ues that is based on heuristics. Thus, the enumeration of 131

values is categorized into various states corresponding to 132

various policies. It is based on the pandemic control sig- 133

nal that the model suggests which policy and time-frame 134

the government should follow. 135

• We also used polynomial regression analysis to forecast 136

the values of the susceptible, infected and recovered 137

data. The study helped in determining at which time 138

period the control policy should be regulated in order 139

to control the pandemic. 140

• The model was tested on six countries, namely India, 141

Iran, Italy, Germany, Japan and the US. The results show 142

that the model was accurate in predicting the number 143

of actual cases for all countries except US and Japan. 144

Furthermore, based on IRR threshold, policy control 145
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signals can be applied to the countries for controlling146

the pandemic.147

The paper is organized as follows: Section II describes148

the related work on epidemic modelling and pandemic con-149

trol. Section III describes the building blocks of the pro-150

posed work. Section IV presents the performance analysis151

of the proposed work, and Section V summarizes the critical152

appraisal of the proposed model against the existing state of153

the art. This is followed by the limitations of the study and154

the conclusions described in Section VI and VII respectively.155

II. RELATED WORK156

There are numerous approaches tomodeling a pandemic [20];157

in general, models for epidemic forecasting can be clas-158

sified into two broad categories: some approaches focus159

purely on mathematical modeling (communicable disease160

models) [21], while others use data analytics (data driven161

models) [22]. Moreover, highly referenced data analytics162

work relies exclusively on data obtained from centralized163

health monitoring agencies to provide high-level, summa-164

rized data analysis [23], [24].165

The communicable disease models use classical differen-166

tial equations to study the spread of disease. In these models,167

the population is divided into several categories and mathe-168

matical rules are applied to determine how individuals move169

between three main compartments, namely, they are suscep-170

tible to the virus, they are infected by the virus, or they171

have recovered from the virus. Epidemiological modeling172

has become commonplace in scientific, administrative, and173

social networks, and is forming the basis for everything from174

public policies (such as shutting down schools and small175

businesses) to personal decisions (such as where to travel).176

The SIRmodel [20] is a commonly cited mathematical model177

which calculates the rate of increase in the number of infec-178

tions by multiplying the current infection rate by the current179

susceptible rate. Furthermore, the SIRmodel incorporates the180

effect of recovery, i.e., when an infected population becomes181

immune after a period of time. Researchers have also studied182

its effects in terms of preventing the spread of a commu-183

nicable virus during a pandemic outbreak [20], [25]. Data-184

driven models, such as neural networks, broad sets of inputs,185

such as mobility, demographics, and medical capacity, are186

used to predict outputs, such as deaths and hospitalizations.187

In light of the recent pandemic, several strategies have been188

suggested for managing public health issues [14], [26], such189

as implementing control measures to keep the R0 below 1190

[15], [27]. The use of machine learning in pandemic sit-191

uations is to improve the accuracy of prediction for both192

infectious and non-infectious disease screening [28]. Some of193

the recent machine learning approaches for pandemic detec-194

tion and control utilizes supervised and unsupervised learn-195

ing algorithms [29], [30], [31]. The main limitation is that196

most machine learning techniques utilize only supervised197

learning algorithms that use pre-acquired, labeled datasets198

with limited emphasis on the pandemic control and policy199

management.200

It has been observed that most of the studies, concentrated 201

mainly on either classical epidemiological models ormachine 202

learningmodels for COVID-19 pandemic predictions, both of 203

which have limitations in generality and scalability, as well 204

as a paucity of monitoring data [8]. Furthermore, it is par- 205

ticularly difficult to calculate mortality rates among reported 206

cases (case fatality ratio) in the early stages of an epidemic. 207

Therefore, these inaccuracies and biases can be carried over to 208

the estimates of the impact of the public health measures that 209

are being taken to contain COVID-19 in the community [32]. 210

Researchers have also applied feedback-based control theory 211

to control the number of infections by monitoring (R0) in 212

conjunction with the number of fatalities [18]. Although R0 is 213

a standard measure that can be utilized to measure the disease 214

spread, it does not indicate the severity of infectious disease, 215

nor does it indicate the rapidity of a pathogen’s spread [33]. 216

This paper uses a novel metric to measure the disease’s 217

contagiousness. 218

It is shown in [34], [35], and [36] that simple social distanc- 219

ing control actions are analyzed for controlling the impact 220

of pandemic (more specifically the universal single inter- 221

val social distancing is utilized). These previous studies pre- 222

sented different techniques for determining the optimal single 223

interval control action, in order to minimize the infected peak 224

prevalence rate which is defined as maximum proportion of 225

infected individuals. Almost all of these proposals assume a 226

full lockdown, a scenario that is somewhat unrealistic. 227

The aim of this study is to develop a hybrid communicable 228

disease, data-driven, and control feedback theory strategy, 229

a standard tool in control engineering, to address the limita- 230

tions outlined above. Even though the aforementioned mod- 231

els are useful for predicting epidemic spread, they lack the 232

granularity necessary to analyze individual behaviors during 233

epidemics and analyze the relationship between individual 234

decisions and epidemic spread. Therefore, such a high-level 235

analysis is of limited use to city officials in adjusting public 236

health policy guidelines [37]. 237

III. PROPOSED WORK 238

In this section, we provide details of the proposed work with 239

respect to the SIR Model, machine learning and the control 240

feedback strategy. 241

A. EVALUATION OF THE SIR MODEL 242

Multiple mathematical models have been developed to exam- 243

ine the spread of infection. One of these models is the 244

SIR model, which is composed of three coupled nonlinear 245

ordinary differential equations. The model assumes that pop- 246

ulation size is constant and is divided into three parts: Suscep- 247

tible (s), Infected (i) and Recovered (r). The SIR differential 248

equations can be expressed as follows [38]: 249

ds
dt
= −k1s(t)i(t) (1) 250

di
dt
= −k2i(t)+ k1s(t)i(t) (2) 251
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TABLE 1. Metrics used in and obtained from SIR curves for different countries.

dr
dt
= k2i(t) (3)252

where s(t) = susceptible population at time t , i(t) = infected253

population at time t and r(t) = recovered population at time254

t , k1 = infection rate, and k2 = recovery rate.255

In these differential equations, the ratio of constant coeffi-256

cients, k1 (the infection rate of the pathogen) and k2 (its recov-257

ery rate), will determine IRR which is k1/k2 as described258

in [19]. This paper employs a machine learning (ML) model259

as discussed in section III-B to predict the optimal values260

for k1 and k2, which are the constants of the SIR coupled261

nonlinear ordinary differential equation, in order to further262

analyze the SIR curves. By using these optimal values and263

the IRR value, we were able to control the Pulse Width264

(PW) parameter, outlined in section III-C1. This was accom-265

plished by examining the intersection point between infected266

and recovered cases, followed by applying a transfer func-267

tion to determine a cutoff-off frequency and then using that268

as an on-off rule signal. Here, policies are enforced when269

predicted infected patients are greater than predicted recov-270

ered patients, and lifted when vice versa, as described in271

section III-C1.272

B. ML MODELS273

We have used ML to predict SIR model and to optimize k1274

and k2 values.275

1) ML APPROACH FOR SIR276

ML is applied to the SIR model as described aforementioned277

by fitting the SIR curves of a specific time period into the278

ML model. The usage information serves as training data279

and predicts the curve’s behavior in the future. Using the280

predicted curve characteristics, the government can develop a281

policy that balances the pandemic with the nation’s economic282

activities. The ML model uses a custom Loss Function (LF)283

based on the weighted sum of root mean squared errors of284

both active and recovered cases. The LF was developed using285

the active cases, which include both confirmed cases and286

deaths, along with recovered cases. This approach improves287

curve fitting optimization since it takes into account both288

active and recovered case errors. Here, the LF is defined as289

follows:290

E1 =

√
(a′(t)− a(t))2

T
(4)291

E2 =

√
(r ′(t)− r(t))2

T
(5) 292

LF = αE1 + (1− α)E2 (6) 293

where E1 = RMSE error of active cases over a time 294

period T , 295

E2 = RMSE error of recovered cases over a time period T , 296

a(t) = number of actual active cases at time t , 297

a′(t) = number of predicted active cases at time t , 298

r(t) = number of actual recovered cases at time t , 299

r ′(t) = number of predicted recovered cases at time t , 300

T = total number of days in consideration, 301

α = constant which determines the weights of the total LF. 302

Specifically, we calculate the LF for training data spanning 303

over T days, also referred to as time period T . In addition, t 304

refers to the day of that particular time period. 305

ML is trained to minimize the LF to find optimal val- 306

ues of k1 and k2. To minimize the LF, the limited memory 307

Broyden–Fletcher–Goldfarb–Shannowith bound-constrained 308

optimization algorithm (L-BFGS-B) algorithm [39] is used 309

with the minimize optimization function in the scikit-learn 310

library [40]. Through the training of the ML model, it is 311

possible to determine the optimal values for k1 and k2, which 312

are the constants in the SIR model.Using SIR differential 313

equations in conjunction with ML strategies, the model was 314

trained to predict SIR curves with k1 and k2 being optimized 315

after training. 316

SIR graphs include curves representing actual data, as well 317

as curves representing S, I , and R curves, which are fitted 318

curves obtained from training the model, along with a pre- 319

diction for a near future date. In this study, the initial values 320

of I and R are taken from real-world data, and the initial 321

value of the susceptible population is calculated by using the 322

appropriate ratio when compared with the number of cases in 323

mainland China. 324

Table 1 shows that the default values for k1 and k2 which 325

are set as 0.001. Observations have shown that when the 326

initial values of the S, I , and R populations are changed, the 327

curves change and take on a new shape and behavior. This 328

behavior will be described in the results section. By using 329

ML, the k1 and k2 parameters of the SIR model are opti- 330

mized to find the point of intersection for infected and recov- 331

ered cases. A simple, but elegant method for controlling the 332

multiple input signals related to the various trigger points is 333

to look at the intersection point between the patients who 334

are infected and those who have recovered. These trigger 335
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points are denoted by phases, with phase (P1) policies being336

enforced when predicted infected patients exceed predicted337

recovered patients and phase (P2) policies being unenforced338

when predicted infected patients fall below predicted recov-339

ered patients. Feedback control can be used to modulate sig-340

nals between phases, as discussed in section III-C.341

2) REGRESSION ANALYSIS342

The polynomial regression model [41] was evaluated as a343

tool for forecasting and predicting the pandemic confirmed,344

recovered, and infected data as represented by function of345

(x). The output of the polynomial regression function is as346

follows:347

f (x) = c0 + c1x + c2x2 . . . .cnxn (7)348

where n is the degree of the polynomial and c is a set of coef-349

ficients. We divided the confirmed, recovered, and infected350

compartments into training and testing phases, during which351

each compartment was trained independently with no corre-352

lation between the curves. Each of the polynomial curves can353

have different polynomial degrees, which are selected accord-354

ing to fitting of the training data, but each polynomial curve355

of a country may not necessarily have the same polynomial356

degree. In this study, we optimized each curve separately for357

the regression model, based on the LF, which is the root mean358

square error. The polynomial regression model was then used359

to predict the future time period of 10-20 days, with the360

regression graph featuring actual data curves in addition to361

predicted confirmed, infected, and recovered curves.362

C. CONTROL FEEDBACK STRATEGY363

The objective is to identify amodel that determines what poli-364

cies and time-frames the government should adopt. In order365

to attain this objective, we introduce the concept of switching366

strategy to effectively manage the transition between these367

phases utilizing control theory techniques [34]. A key part368

of our argument consists of three key points: specifically,369

we propose a modulating strategy for on-off policy, present370

an elegant method for gathering feedback based on the SIR371

model’s predicted parameters, and offer a systematic method372

for controlling disease phase transitions.373

The control feedback strategy acts as a policy control sig-374

nal, whereby policies are initiated (enforced) when predicted375

infected patients exceed predicted recovered patients, and376

subsequently unenforced when the reverse is true. Since the377

IRR is governed by the ratios k1, the infection rate, and k2,378

the recovery rate, these values are analyzed to adjust the PW379

parameters of the on-off signal, outlined in section III-C1.380

In addition, we use linear time-invariant transfer function to381

optimize the duty cycle and the width of the on-off signals382

for policy control. This model presents an enumeration of383

IRR values that is based on heuristics. Thus, the enumeration384

of values is categorized into various states corresponding to385

various policies. It is based on the pandemic control signal386

that the model suggests which policy and time-frame the387

government should follow. In the following sections, we will388

discuss the concept of modulated control signal and the linear 389

time-invariant transfer function. 390

1) CONTROL SIGNAL 391

The Pulse Width Modulation (PWM) technique is used to 392

reproduce the amplitude of an analog input signal by gen- 393

erating pulses of variable width. With PWM phase control, 394

the phases are driven by a series of ‘‘ON-OFF’’ pulses, while 395

varying the duty cycle (a percentage of time when the output 396

voltage is ‘‘ON’’ as compared to ‘‘OFF’’) while maintaining 397

the frequency. A PWM signal’s ON time can be adjusted (or 398

modulated) as desired, since it is a digital, unipolar square 399

wave signal. Generally, duty cycle (D) is defined as the ratio 400

of ON time to signal period, that is, D = M/T , where M is 401

the duty cycle time and T is the duration time. There is a range 402

between 0 and 1 and D can also be expressed in percentage 403

terms, i.e. from 0% to 100%. Control is achieved by varying 404

the duty cycle of the control signal. Figure 1 shows the PWM 405

signal with two basic time periods. Here, frequency (F) is the 406

reciprocal of the duration time, F= 1/T with the standard unit 407

of frequency represented as Hertz (Hz). 408

FIGURE 1. PWM signal with two basic time periods.

In the SIR model, the constant value determines the PW of 409

the control signal, enabling the government to decide which 410

policy to implement. In addition, the constants k1 and k2 of 411

those differential equations are also used to calculate the IRR, 412

which is defined as k1/k2. In this study, a square wave is 413

used as the control signal, while a PWM signal controls when 414

the signal is turned on or off. Digital signals can be either 415

0 or 1, so we used a signal value of 1 to represent complete 416

lockdown, in other words, strict restriction policies must be 417

implemented, and 0 to represent no restriction. Actions are 418

defined as enforcement of a policy within a specific phase. 419

Figure 2 illustrates the phase transitions. 420

Specifically, the PW is calculated as the difference in x 421

coordinates between the first date in the training data and the 422

intersection point of the SIR curves for infected and recovered 423

patients. The start date is the first date in the training data that 424

is considered in training the model. Thus, pandemic control 425

can only be achieved if real cases follow the path of the pre- 426

dicted curves after this tipping point. It is often the case that 427

the curves do not intersect in the near future due to the IRR 428

being high or an epidemic ravaging the country. Therefore, 429

instead of using a large PW in such cases, we use thresholds 430

of IRR values to define the PW as follows: 431
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FIGURE 2. Definition of the phase repetition interval [Reproduced
from [43]].

• A default PW of 50 days is applied when the infected432

and recovered cases do not intersect in the near future433

and IRR > 100.434

• The default value is set at 40 days when 60 < IRR <435

100.436

• The default value is 30 days when IRR < 60.437

Following the control signal, the government then applies438

its policies in phases to the population. In the case of a simple439

square wave, it is suggested that a lockdown is implemented440

during the duty cycle width, along with strict policies for the441

on-off periods. The lockdown is abruptly imposed on the pub-442

lic without warning, just as the off policy is abruptly retracted443

since all restrictions are revoked at once [34]. Nevertheless,444

the goal is to implement restrictions gradually so that they445

have the least economic impact on the population and main-446

tain a balance between public health and economic needs.447

In the next section, we will introduce the transfer function,448

along with the control signal, to present an enumeration of449

IRR values based on heuristics. Therefore, the enumeration450

of values is divided into a variety of states corresponding451

to various policies. It uses a pandemic control signal that452

passes through a transfer function controlled by IRR values to453

suggest what policies and timescales the government should454

follow.455

2) TRANSFER FUNCTION456

The control signal’s output is modeled by a linear time invari-457

ant transfer function [42]. The input x(t) is used to create458

a general linear time invariant system, and the output y(t)459

is used to obtain the bilateral Laplace transform x(t) and460

y(t) [42]:461

X (s) = L(x(t)) =
∫
∞

−∞

x(t)e−stdt (8)462

Y (s) = L(y(t)) =
∫
∞

−∞

y(t)e−stdt (9)463

where X (s) and Y (s) are the Laplace transform of x(t) and464

y(t), respectively, and s is a complex number that repre-465

sents the frequency parameter. The transfer function H (s)466

represents the relationship between the output signal Y (s) of a 467

control system and the input signal X (s), for all possible input 468

values, and is defined as follows [42]: 469

H (s) =
Y (s)
X (s)

(10) 470

We will assume the system is a simple single-pole filter in 471

this article, with the following characteristics [42]: 472

H (s) =
ω0

s+ ω0
(11) 473

With the above equations where ω0 is proposed as: 474

ω0 =
k1ln(IRR)

2
(12) 475

Modulated control signals can be passed through a transfer 476

function, where the PW of the input signal and the pole of 477

the transfer function are set by parameters of the SIR model. 478

If only square waves are used, it is suggested that the pub- 479

lic be locked down together with strict on-off policies, but 480

instead, the lockdown is abruptly imposed without warning 481

and the off policy is suddenly retracted since all restrictions 482

are revoked at once. Instead, a control signal through a trans- 483

fer function is used to allow a gradual implementation of 484

policies. 485

Following the filtering phase, the control signal enters 486

the state of imposition of the most restrictive measures that 487

have the least economic impact on the population and main- 488

tain a balance between public health and economic needs. 489

Restrictions are implemented progressively, depending on 490

IRR and k1. For instance, in a country with a high IRR 491

imposing complete lockdown occurs more quickly, with 492

fewer intermediate state of pandemic control. As the y-value 493

changes within the PW from 0 to 1, indicating a specific 494

policy should be implemented by the government. The grad- 495

ual implementation of policies ensures that economic activ- 496

ities are not disrupted and stricter policies are only imposed 497

when necessary. In Figure 3, phase transitions and state tran- 498

sitions are illustrated by using a modulated signal through 499

a transfer function while considering the parameters of the 500

SIR model. 501

Table 1 provides the data for feeding into theMLmodel for 502

each of the six countries included in the study, as well as the 503

IRR, k1, and k2 outputs of the ML model. The optimal values 504

are obtained using the L-BFGS-B algorithm after a model 505

FIGURE 3. Phase transitions and state transition illustration where states
(S0-S6) are defined in Section IV-C.

VOLUME 10, 2022 98249



K. Narayan et al.: Using Epidemic Modeling, Machine Learning and Control Feedback Strategy

FIGURE 4. Closed loop control system for policy enforcement.

has been fitted using SIR differential equations. Additionally,506

it displays the x-coordinate of the point of intersection of each507

country’s infected and recovered curve, as well as the PW of508

the control signal.509

D. CONTROL FEEDBACK STRATEGY FOR POLICY510

MANAGEMENT511

By coupling PWMand linear time-invariant transfer function,512

a control feedback strategy for policy management can be513

formed whereby specific policies can be applied gradually514

and turned on and off according to policy enforcement needs.515

The framework of the proposed work is shown in Figure 4.516

As seen from figure, the model has four components namely517

SIR model, input signal, feedback signal and transfer func-518

tion. SIR model is used to predict the number of suscepti-519

ble, infected, and recovered cases. Machine learning is then520

used to predict the optimal values of k1 and k2 from the SIR521

model. Predicted values of k1 and k2 values are later used to522

determine IRR values. IRR values determine which policies523

should be implemented and how aggressively they should be524

implemented. The poles of the linear time-invariant transfer525

function (ω0) are then determined by the IRR values. The526

transfer function allows us to experiment with different policy527

control strategies based on predicted values of the SIR model528

at different orders of differentiation. PWM acts like ‘‘control529

knobs’’ phases, which turn on (enforce) policies when pre-530

dicted infected patients exceed predicted recovered patients531

and turn off (will not enforce) policies when predicted recov-532

ered patients surpass predicted infected patients. PWM con-533

trols phase transitions based on a series of ‘‘ON-OFF’’ pulses534

while varying the duty cycle according to the intersection535

point between infected and recovered patients. To make536

the transition between these phases as smooth as possible,537

a control feedback strategy has been designed to manage538

the transition between these phases. By coupling the transfer539

function and PWM, restrictions can be implemented grad-540

ually to maintain the balance between public health and541

economic interests. Initial control signals are square waves,542

then PWM signals regulate when the signal is ON-OFF 543

and consequently transfer function is used to implement 544

the policy at different states depending on optimized IRR 545

values. In this way, policy enforcement can be imple- 546

mented gradually and turned on/off as necessary, rather than 547

abruptly imposed on the public without warning during the 548

phase. 549

IV. RESULTS 550

A. DATASET 551

SIR curves were plotted using dataset from John Hopkins 552

University (JHU), which includes a time series of COVID-19 553

cases [43]. The dataset contains country-specific distribu- 554

tions of confirmed cases, deaths, and recovered cases, as well 555

as day-specific counts for each category. The dataset is a 556

time-series dataset which covers covid information for a dura- 557

tion of 510 days from 1/22/20 - 6/14/21. The instances of data 558

or number of days used for training varies for each country 559

and we match the training data duration in such a way that 560

data before the onset of covid-spread in a country is used 561

for training and the SIR curves are predicted for the next 562

30 days (which is the size of testing data). The instances used 563

in training in days can be calculated by subtracting the start 564

date with 22/1/20. Start date can be obtained from Table 1. 565

For instance- training data size for Germany is 60 days = 566

3/22/20 - 1/22/20 and the number of days for which the curves 567

are predicted (test data size) = 30 days. 568

B. SIR CURVES ON ACTUAL DATA 569

To demonstrate the predictability of SIR curves, six countries 570

were selected from around the world, including the US, India, 571

Iran, Italy, Germany, and Japan. The COVID-19 pandemic 572

curve is drawn from January 22, 2020 forward, with each 573

country having its own demographics, social habits, and poli- 574

cies regarding the pandemic. 575

Figures 5(a)-(c) and Figures 6(a)-(c), show the SIR graphs 576

for India, Italy, Iran, Germany, theUS and Japan, respectively. 577

Here, the blue line represents the number of active cases 578

in the country. The red dashed line and red dashed rectan- 579

gle represents the predicted behavior of the infected curve 580

and the actual behavior of infected cases across the coun- 581

try respectively. The green dotted line and the green dotted 582

circle represents the predicted behavior of recovered cases 583

and actual recovered cases in the country respectively. Plot- 584

ting SIR graphs of India, Italy, Iran, and Germany show the 585

least variation between actual and predicted values. By con- 586

trast, Japan’s and the U.S.’s ‘actual’ values do not match 587

with the regression predictions. It is because these countries 588

have implemented some restrictive measures to combat the 589

spread of the disease. In the year 2020, the spread in the 590

US was growing at a faster rate, and the IRR reached 150, 591

which was alarming. Our hypothesis suggests that a nation- 592

wide lockdown could have prevented widespread disruptions 593

caused by the COVID-19 pandemic. The plot shows that, 594

in the US, imposing a lockdown would have decreased the 595
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FIGURE 5. SIR curves and its prediction compared to actual data for (a) India (b) Italy, and (c) Iran. The blue line represents the number of
active cases in the country. The red dashed line represents the predicted behavior of the infected curve. The red dashed rectangle represents
the actual behavior of infected cases across the country. The green dotted line represents the predicted behavior of recovered cases. The green
dotted circle represents actual recovered cases in the country.

rate of infection, which was consistently increasing. Despite596

the regression model’s prediction, the Japanese authorities597

were able to prevent worse conditions than those predicted.598

Amajor reason for Japan’s success is the government’s insis-599

tence on mask usage. Japan’s excellent medical infrastruc-600

ture, together with those measures, enabled it to control the601

pandemic early on, as shown in Figure 6(c).602

C. POLICY SIGNAL GRAPHS603

The policy signal graphs for the US, Japan, Italy,604

Iran, Germany, and India are shown in Figures 7(a)-(f)605

respectively. The black line represents the proposed policy 606

control signal to be implemented by the country. The black 607

policy control signal is the output signal of the transfer func- 608

tion when the red square wave is fed through as input. Policy 609

signal graphs illustrate which policies should be implemented 610

based on indicators like infection rate and IRR, as well as how 611

decisions should change as the policy signal changes. Dashed 612

lines on these graphs represent square wave signals with PWs 613

as in Table 1, while solid lines represent the control signal 614

passing through a single-pole filter withω0 as the pole. As the 615

final control signal is not a square wave, it suggests gradual 616
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FIGURE 6. SIR curves and its prediction compared to actual data in (a) Germany, (b) US, and (c) Japan. The blue line represents the
number of active cases in the country. The red dashed line represents the predicted behavior of the infected curve. The red dashed
rectangle represents the actual behavior of infected cases across the country. The green dotted line represents the predicted behavior
of recovered cases. The green dotted circle represents actual recovered cases in the country.

implementation and lifting of all policy measures. It also617

suggests implementing restrictions in a phased or stepped618

manner.619

Depending on IRR thresholds, policy implementation is620

divided into seven states represented by S. The policies and621

thresholds are outlined below.622

1) S0, if 0 <IRR≤ 2: No restrictive policies should be623

implemented624

2) S1, if 2 <IRR≤ 5: Wear mask and sanitize your hand625

regularly626

3) S2, if 5 <IRR≤ 10: Practice social distancing at public627

places628

4) S3, if 10 <IRR≤ 20: Encourage people to stay at home. 629

Companies to work with 50% capacity 630

5) S4, if 20 <IRR≤ 50:Weekend lockdown policy should 631

be implemented. 632

6) S5, if 50 <IRR≤ 80:Weekend lockdown policy should 633

be implemented. Also, only essential services should be 634

running in the country and for fixed time. 635

7) S6, if IRR> 80: Complete lockdown. 636

The control signal’s y-coordinates are used to determine 637

which policy to adopt. If a country has a high IRR factor, 638

such as the US, there is less time spent in S0 to S5 states 639

and, therefore, reaching S6 state is relatively faster than with 640
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FIGURE 7. The predicted policy control signal to be implemented in (a) US, (b) Japan, (c) Italy, (d) Iran, (e) Germany, and (f) India. The
dotted red signal is a square with PW as shown in Table 1. The black line represents the proposed policy control signal to be
implemented by the country. The black policy control signal is the output signal of the transfer function when the red square wave is fed
through as input.

TABLE 2. State and control signal relationship.

respect to Japan, which has a low IRR factor. As seen from641

the PW of Japan, the majority part of the PW indicates the642

country falls into the state S3 to S5 state. In contrast to Iran,643

the control signal does not indicate a total lockdown within644

the next 30 days.645

In Table 2, we show the y-coordinate of the control sig-646

nal and the policy that a country needs to follow to attain647

a given state. Depending on the pandemic control signal’s648

x-coordinate interval, the country determines how long it will649

take to implement a particular policy.650

D. REGRESSION CURVES ON ACTUAL DATA651

The polynomial regression model is utilized to plot and fore-652

cast active cases, infected cases, and recovered cases for each653

of the six countries. Figures 8(a)-(c) and 9(a)-(c) illustrate654

the regression curves for the US, Japan, Italy, Iran, Germany,655

and India. Here, starred dashed blue line and dotted blue656

line represents the predicted behaviour of active cases and657

the actual behaviour of active cases in the country respec-658

tively. Crossed dashed red line and dashed red line rep-659

resents the predicted behaviour of infected curve and the660

actual behaviour of infected cases in the country respectively. 661

Circled dashed green line and dashed green line represents 662

the predicted behaviour of recovered curve and the actual 663

behaviour of recovered cases in the country respectively. 664

From the figures it can be seen that fitting the polynomial 665

regression model to training data is more accurate in coun- 666

tries where the pandemic is just beginning or growing rapidly 667

than in countries that do not exhibit those behaviors. When 668

compared to India and the US, other countries where the 669

number of infected cases is decreasing have more error while 670

fitting the polynomial regression model and gives relatively 671

poor results for the duration of the pandemic. In those coun- 672

tries applying the policy when rate of change of infection 673

increases the recovery rate would be much beneficial rather 674

than applying at a later stage. For instance, in Japan and Italy 675

the policy could have started at a early month of March rather 676

than waiting till the end of the month. We can also conclude 677

that if the regression model is applied at the beginning of 678

an outbreak it can give much better and accurate results and 679

applying policies at those stages could effectively control the 680

pandemic. 681

E. COMPARATIVE ANALYSIS BETWEEN SIR AND 682

REGRESSION 683

Based on the SIR model and the regression model, we have 684

modeled the COVID-19 pandemic. Based on our find- 685

ings, SIR model is better at predicting curves over a long 686

period of time than regression models, whereas regression 687

models are better at predicting curves in the early phases 688

of viral outbreaks. In the SIR model, the curves corre- 689

sponding to susceptible, infected, and recovered are related 690
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FIGURE 8. Regression curves and its prediction compared to actual data in (a) US, (b) Japan, and (c) Italy. Starred dashed blue line
represents the predicted behaviour of active cases. Dotted blue line represents the actual behaviour of active cases in the country. Crossed
dashed red line represents the predicted behaviour of infected curve. Dashed red line represents the actual behaviour of infected cases in
the country. Circled dashed green line represents the predicted behaviour of recovered curve. Dashed green line represents the actual
behaviour of recovered cases in the country.

since they are modeled using differential equations that691

are related. Thus, the constants of SIR differential equa-692

tions determine their curve behavior. Since SIR differential693

equations and constants govern those equations, all curves694

in the SIR model are dependent on each other. On the695

other hand, the Active, Recovered, and Infected curves plot-696

ted using the regression method are independent of each697

other since they are not related by any mathematical con-698

dition. Consequently, since each curve has its own train-699

ing set, the behavior of one doesn’t affect the behavior of700

another.701

In order to compare the models and their curve behavior, 702

two countries were selected: 703

• Case 1: Italy: the selected period includes all the phases 704

of the pandemic, and thus reveals the rise and fall of the 705

infected curves (See Figure 8 (c)). 706

• Case 2: India: the selected time interval only includes 707

the beginning of the pandemic, so the infected curve is 708

only shown for the rising phase of the epidemic (See 709

Figure 9 (c)). 710

In the second case, India’s curves only correspond to the 711

period around the outbreak of the pandemic. As seen in 712
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FIGURE 9. Regression curves and its prediction compared to actual data in (a) Iran, (b) Germany, and (c) India. Starred dashed blue line
represents the predicted behaviour of active cases. Dotted blue line represents the actual behaviour of active cases in the country.
Crossed dashed red line represents the predicted behaviour of infected curve. Dashed red line represents the actual behaviour of
infected cases in the country. Circled dashed green line represents the predicted behaviour of recovered curve. Dashed green line
represents the actual behaviour of recovered cases in the country.

Figure 9(c), the regression model performs better than the713

SIR model for India. The SIR model, in contrast, performs714

significantly better at predicting the downfall of recovered715

cases in Italy than does a regression model. From the sim-716

ulation results, we can conclude that the SIR model performs717

well when a longer period of time is taken into consideration718

or when the time interval encompasses more phases of the719

pandemic.720

V. COMPARATIVE ANALYSIS721

In this section we provide the qualitative analysis of our work722

with the existing state of the art.723

Epidemiological models such as the SIR model lack het-724

erogeneity and can easily be programmed and analyzed [44].725

There is also a shared opinion that SIR models are not com- 726

pletely appropriate due to their inflexibility [45]. Unlike exist- 727

ing SIR and SEIRmodels [46], our model provides the ability 728

to predict the critical parameters, such as infection rate and 729

recovery rate, so that it can adapt to changing policy require- 730

ments. We observe, for example, that if city-wide lockdown 731

is applied at a particular instant, i.e., IRR thresholds, it can 732

lower the transmission rate substantially in comparison to 733

other epidemiological models. Our method incorporates the 734

SIR model along with the feedback-based control signal and 735

transfer function for pandemic control. For instance, in Japan 736

and Italy the policy could have started early during the month 737

of March rather than waiting till the end of the month. In mid- 738

March, for example, the US has an IRR of 147.58 > 80 (i.e., 739
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State S6). In this case, our policy suggested complete lock-740

down to reduce the spread of COVID-19. However, in real-741

ity, the government started shutting down the public schools742

in New York city and Ohio started closing restaurants and743

bars [47]. The complete lockdown took a while to be imposed744

in those states of the US. Similarly for Germany, we com-745

puted IRR as 116.64> 80 (i.e., State S6) which is a complete746

lockdown phase. However, Germany imposed a partial lock-747

down in late March [48].748

In contrast, data-driven models require enormous amounts749

of data to model behavior and improve learning and are750

computationally expensive. ML models used for COVID-19751

forecasting, as discussed in [49] and [50], do not efficiently752

exploit the fact that the data is time-series data. It does753

not include continuous feedback and does not take that into754

account when forecasting. Pandemic forecasts are subject to755

uncertainty caused by various unknown factors at the time.756

Our model which is based on feedback learning has the757

advantage of reducing the impact of uncertainty in models;758

as a result, if it is designed carefully, a strategy can still be759

effective despite inaccurate models.760

A commonly cited approach [17], authors used on-off761

mechanisms to ease social-distancing measures, by keep-762

ing the pandemic R0 below a certain threshold, where some763

restrictions are lifted as the number of new intensive care764

cases drops and are reinstated when it exceeds the threshold.765

Such an approach is more robust to uncertainties concerning766

both the R0 and the severity of the virus, as well as more767

flexible and resilient than solutions that are based on fixed768

duration. The on-off mechanism is an example of a feed-769

back system, in which the feedback variable is the number of770

intensive care unit patients. By contrast, the on-off approach771

implies that the lockdown is abruptly imposed on the public772

without warning, as the off policy is abruptly retracted when773

all restrictions are withdrawn at once. The major drawback774

to using this type of on-off control mechanism is that it can775

create oscillations, if overly too aggressively, overwhelm the776

healthcare system’s ability to effectively treat serious condi-777

tions. On the other hand, our study uses a feedback mecha-778

nism coupled with a transfer function by enumerating IRR779

values using heuristics to gradually introduce restrictions so780

as to ensure that they have the least economic impact on the781

population and maintain a balance between health and pros-782

perity. For example, in Italy, the IRR on March 9 was 10.95783

(i.e., State S3), where the policy suggested that the city offi-784

cials encourage people to stay at home and businesses to oper-785

ate at 50% capacity. However, in reality, due to the COVID-19786

pandemic in Italy, the Italian government imposed a national787

lockdown or quarantine on 9 March 2020 that restricted all788

movements of the population except for necessity, work,789

and health reasons. As the lockdown is abruptly imposed on790

the public without warning, the healthcare system was over-791

whelmed, and this can lead to its inability to treat COVID-19.792

Nonetheless, as the policy suggested in [17] is only based793

on a on-off policy and does not take gradual implementation794

into account, it would recommend a full lockdown within the795

same period instead of the above measure. This is because 796

the infection rate is higher than the recovery rate. As a result 797

of gradual implementation, the health care system does not 798

overload and is capable of effectively treating pandemic. 799

VI. LIMITATIONS OF THE STUDY 800

In the paper, data analysis has been conducted using Covid- 801

19, 2020 datasets. In addition, the study examines threshold 802

mechanisms for implementing state policies during pandemic 803

outbreaks. The threshold values for these policies were deter- 804

mined with a limited dataset. We plan to use ML in the future 805

to calculate and predict the threshold for implementing pan- 806

demic policies during outbreaks of pandemics. 807

VII. CONCLUSION 808

This paper utilizes SIR, feedback strategy based on con- 809

trol theory and regression models to study the behavior of 810

COVID-19 pandemic. It was deduced that the SIR model 811

is best suited for analyzing long-term trends in the spread 812

of diseases, whereas the regression model provides better 813

results during the outbreak phase than the SIR model. The 814

results can be quantified using mean squared error between 815

the predicted values and the actual values. At an early stage 816

of the pandemic, it is evident from the results shown in the 817

paper that there is a large difference between the predicted 818

and the actual number of infected people curves. Based on 819

the graphical result and the mean squared error, it shows that 820

the SIR model cannot provide a useful early prediction of 821

the epidemic in this case. However, we use the SIR param- 822

eters along with feedback based control theory in order to 823

implement policy guidelines in the form of phases and states. 824

Control feedback strategy helped to determine not only the 825

type of policy that should be implemented in the country but 826

also the length of the time it should be implemented for. The 827

model was comparatively evaluated with regression analy- 828

sis in understanding when and where the pandemic strategy 829

should be employed. As a result of this study, the coun- 830

try officials would be able to control the pandemic and not 831

impact the economy negatively. In countries such as India 832

and the US, the SIR curves do not converge because the 833

infection rate increases much faster than the recovery rate. 834

In addition, it was found that the SIR model along with 835

machine learning accurately computed the actual and pre- 836

dicted cases for all countries with the exception of Japan 837

and US since these countries did not implement a policy 838

control strategy at an early stage, whereas India, Iran, Italy, 839

and Germany did. Furthermore, based on SIR parameters 840

and feedback strategy based on control theory the states that 841

we proposed can be effectively used by the public officials. 842

It was found that if these state policies were implemented 843

at the right time, the pandemic would have been controlled 844

without affecting the economy of all the aforementioned 845

countries. 846

For future work, we plan to use ML for predicting IRR 847

values. Furthermore, the idea for the control feedback strat- 848

egy for policy management can be tried in different use-cases 849
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for pandemic control, two of which are presented here.850

On account of pandemic spread, it is basic to know the spa-851

tio temporal feedback to investigate the effect of individu-852

als relocating between different countries or clusters. Such853

movement presents vulnerabilities in the model which can854

be concentrated on utilizing the idea proposed in this paper.855

Besides, there are various COVID-19 episodes in which856

an infected individual probably infected 80% or a greater857

amount of individuals in room in only a couple hours [51],858

though in different cases it was considerably less infectious.859

Such an over-dispersive and super-spreading conduct of this860

infection brings imbalanced dissemination of cases [52]. This861

sort of situation, shifting back and forth between being infec-862

tious and noninfectious, caught by over-dispersion factor,863

can be concentrated on utilizing the idea proposed in this864

paper.865
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