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ABSTRACT Coronavirus disease (COVID-19) is one of the world’s most challenging pandemics, affecting
people around the world to a great extent. Previous studies investigating the COVID-19 pandemic forecast
have either lacked generalization and scalability or lacked surveillance data. City administrators have
also often relied heavily on open-loop, belief-based decision-making, preventing them from identifying
and enforcing timely policies. In this paper, we conduct mathematical and numerical analyses based on
closed-loop decisions for COVID-19. Combining epidemiological theories with machine learning models
gives this study a more accurate prediction of COVID-19’s growth, and suggests policies to regulate it.
The Susceptible, Infectious, and Recovered (SIR) model was analyzed using a machine learning model to
estimate the optimal constant parameters, which are the recovery and infection rates of the coupled nonlinear
differential equations that govern the epidemic model. To modulate the optimized parameters that regulate
pandemic suppression and mitigation, a systematically designed feedback-based strategy was implemented.
We also used pulse width modulation to modify on-off signals in order to regulate policy enforcement accord-
ing to established metrics, such as infection recovery ratios. It was possible to determine what type of policy
should be implemented in the country, as well as how long it should be implemented. Using datasets from
John Hopkins University for six countries, India, Iran, Italy, Germany, Japan, and the United States, we show
that our 30-day prediction errors are almost less than 3%. Our model proposes a threshold mechanism for
policy control that divides the policy implementation into seven states, for example, if Infection Recovery
Ratio (IRR) >80, we suggest a complete lockdown, vs if 10<IRR<20, we suggest encouraging people to
stay at home and organizations to work at 50% capacity. All countries which implemented a policy control
strategy at an early stage were accurately predicted by our model. Furthermore, it was determined that the
implementation of closed-loop strategies during a pandemic at different times effectively controlled the
pandemic.

INDEX TERMS Covid-19, pandemic, policy management, SIR, machine learning, regression, control
theory, transfer function.

I. INTRODUCTION
Human populations have been affected by communicable
diseases since ancient times [1]. Two of the most ancient
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and deadly diseases of humanity, tuberculosis and malaria,
ravaged Ancient Egypt for more than 5,000 years and are still
a major health problem today [2]. In 2009, a new A/HIN1
influenza virus emerged, causing the first global pandemic
in 40 years [3]. Within the first two months of the out-
break, the disease had spread to more than 70 countries
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with more than 30,000 confirmed cases [4] thereby adversely
impacting human lives. Despite two years of pandemic preva-
lence, people are still adapting to its after effects. As of
May 28, 2022, there had been 8.5 million confirmed cases
and more than 1 million deaths in the United States (US)
alone [5]. COVID-19 is one of the many communicable dis-
eases that threaten us to this day, despite all the techno-
logical advances. Also, the findings in [6] suggest that the
resurgence of the virus, resulting in the second wave, may
be attributable to an incongruous behavior on the part of
Italian residents in following recommended health measures,
despite government-run preventive programs. It is obvious
that there is a pressing need to take action against global pan-
demic, which requires non-pharmaceutical interventions such
as social distancing, testing, and contact tracing, as well as
pharmaceutical research, which includes designing vaccines
and studying the protein that can contain the virus [7].

In order to study the epidemics, a variety of mathematical
models have been proposed, which includes studies on Sus-
ceptible, Infected, Recovered (SIR), Susceptible, Exposed,
Infected, Recovered (SEIR), and others [8]. These study
model to stabilize and diminish the rate of propagation of
a communicable virus in the event of a pandemic outbreak.
However, these models are simple, which makes it easy to
calculate, it likely oversimplifies complex disease processes
such as Covid-19 due to its simplicity [9]. Many data scien-
tists and health specialists have faced the challenge of mod-
eling the COVID-19 outbreak and related projections for the
number of infected cases, deaths, and recovered cases [10].
Consequently, experts in epidemiological modeling have dif-
ficulty predicting COVID-19’s future [11]. Furthermore, it is
shown epidemiological modeling is not usually viewed from
an engineering perspective, which is why we think public
officials might greatly benefit from one and better manage
this deadly disease. On the other hand, the use of Artificial
Intelligence and Deep Learning methods [12] for modeling
numerous types of epidemic communicable diseases in dif-
ferent application scenarios has increased in recent years,
making it very difficult for specialists to determine which of
these models to use for prediction [13].

In the light of the recent pandemic, techniques have been
proposed for managing public health strategies [14], [15],
thereby focusing on implementing control measures to keep
the reproduction rate (Rp) [16] below 1. Mitigation, which
focuses on slowing the pandemic spread, and suppres-
sion, which focuses on reversing growth, are the two basic
approaches to control the spread of a pandemic [17]. This
generally relies on keeping the pandemic (Rp) below a
specific value and is typically done by enforcing policies
such as social distancing. One technique for implementing
social-distancing measures is an on-off approach, where city
officials relax some restrictions when the number of new
cases requiring intensive care is below a threshold, tightening
them otherwise. However, these officials generally resort to
an open loop, principle-based decision-making process [18],
thereby struggling to identify the optimal policy at the right
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time. This can have the unintended consequences of causing
economic activities to plummet, thereby putting millions of
jobs at risk. The aim of this work is to assist city officials in
making data-informed decisions to keep people safe, while
sustaining economic activities during any pandemic outbreak.

This work addresses how effectively we can modulate and

manage public health policies by developing hybrid models
which are not just purely data-driven, but are also based on
control feedback and time based monitoring of the country.
Furthermore, how can we measure the pandemic contagious-
ness using novel threshold mechanism to control the pan-
demic. In our research, we explored how feedback can help
stabilize and slow the progression of this deadly viral infec-
tion. Using engineering principles, we have come up with
a practical approach to provide policymakers with concrete
guidance, one that takes both medical and socioeconomic
factors into account. We relied on feedback-based strategies
to control the outbreak and manage the longer-term caseload
effectively. The goal of this paper is to develop a fundamen-
tal understanding of interventions’ impacts on the pandemic
spread and their ability to forecast its progression. We present
a novel data-based modeling approach that is equally effi-
cient in controlling and suppressing the spread of viruses.
In this study, we address the following challenges: (1) how
to evaluate public health policies using models that are not
only data-driven, but also based on control feedback strat-
egy, and (2) how can we calculate the Infection Recovery
Ratio (IRR) to assess the contagiousness of the pathogens
as explained in [19]. (3) how can we analyze the best-fit
model for predicting the COVID-19 outbreak using different
analytical techniques. This work addresses these issues and
provides the following contribution:

o In this study, a SIR model is employed to investigate
COVID-19’s behavior. The machine learning model is
used to optimize both infection rates and recovery rates.

o The proposed IRR is used to guide city officials on
which policies to implement at what stage.

« Additionally, we use a modulated control signal and a
linear time-invariant transfer function to optimize the
duty cycle and the width of the on-off signals for policy
control. This model presents an enumeration of IRR val-
ues that is based on heuristics. Thus, the enumeration of
values is categorized into various states corresponding to
various policies. It is based on the pandemic control sig-
nal that the model suggests which policy and time-frame
the government should follow.

o We also used polynomial regression analysis to forecast
the values of the susceptible, infected and recovered
data. The study helped in determining at which time
period the control policy should be regulated in order
to control the pandemic.

o The model was tested on six countries, namely India,
Iran, Italy, Germany, Japan and the US. The results show
that the model was accurate in predicting the number
of actual cases for all countries except US and Japan.
Furthermore, based on IRR threshold, policy control
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signals can be applied to the countries for controlling
the pandemic.

The paper is organized as follows: Section II describes
the related work on epidemic modelling and pandemic con-
trol. Section III describes the building blocks of the pro-
posed work. Section IV presents the performance analysis
of the proposed work, and Section V summarizes the critical
appraisal of the proposed model against the existing state of
the art. This is followed by the limitations of the study and
the conclusions described in Section VI and VII respectively.

Il. RELATED WORK

There are numerous approaches to modeling a pandemic [20];
in general, models for epidemic forecasting can be clas-
sified into two broad categories: some approaches focus
purely on mathematical modeling (communicable disease
models) [21], while others use data analytics (data driven
models) [22]. Moreover, highly referenced data analytics
work relies exclusively on data obtained from centralized
health monitoring agencies to provide high-level, summa-
rized data analysis [23], [24].

The communicable disease models use classical differen-
tial equations to study the spread of disease. In these models,
the population is divided into several categories and mathe-
matical rules are applied to determine how individuals move
between three main compartments, namely, they are suscep-
tible to the virus, they are infected by the virus, or they
have recovered from the virus. Epidemiological modeling
has become commonplace in scientific, administrative, and
social networks, and is forming the basis for everything from
public policies (such as shutting down schools and small
businesses) to personal decisions (such as where to travel).
The SIR model [20] is a commonly cited mathematical model
which calculates the rate of increase in the number of infec-
tions by multiplying the current infection rate by the current
susceptible rate. Furthermore, the SIR model incorporates the
effect of recovery, i.e., when an infected population becomes
immune after a period of time. Researchers have also studied
its effects in terms of preventing the spread of a commu-
nicable virus during a pandemic outbreak [20], [25]. Data-
driven models, such as neural networks, broad sets of inputs,
such as mobility, demographics, and medical capacity, are
used to predict outputs, such as deaths and hospitalizations.
In light of the recent pandemic, several strategies have been
suggested for managing public health issues [14], [26], such
as implementing control measures to keep the Ry below 1
[15], [27]. The use of machine learning in pandemic sit-
uations is to improve the accuracy of prediction for both
infectious and non-infectious disease screening [28]. Some of
the recent machine learning approaches for pandemic detec-
tion and control utilizes supervised and unsupervised learn-
ing algorithms [29], [30], [31]. The main limitation is that
most machine learning techniques utilize only supervised
learning algorithms that use pre-acquired, labeled datasets
with limited emphasis on the pandemic control and policy
management.
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It has been observed that most of the studies, concentrated
mainly on either classical epidemiological models or machine
learning models for COVID-19 pandemic predictions, both of
which have limitations in generality and scalability, as well
as a paucity of monitoring data [8]. Furthermore, it is par-
ticularly difficult to calculate mortality rates among reported
cases (case fatality ratio) in the early stages of an epidemic.
Therefore, these inaccuracies and biases can be carried over to
the estimates of the impact of the public health measures that
are being taken to contain COVID-19 in the community [32].
Researchers have also applied feedback-based control theory
to control the number of infections by monitoring (Rp) in
conjunction with the number of fatalities [18]. Although Ry is
a standard measure that can be utilized to measure the disease
spread, it does not indicate the severity of infectious disease,
nor does it indicate the rapidity of a pathogen’s spread [33].
This paper uses a novel metric to measure the disease’s
contagiousness.

Itis shown in [34], [35], and [36] that simple social distanc-
ing control actions are analyzed for controlling the impact
of pandemic (more specifically the universal single inter-
val social distancing is utilized). These previous studies pre-
sented different techniques for determining the optimal single
interval control action, in order to minimize the infected peak
prevalence rate which is defined as maximum proportion of
infected individuals. Almost all of these proposals assume a
full lockdown, a scenario that is somewhat unrealistic.

The aim of this study is to develop a hybrid communicable
disease, data-driven, and control feedback theory strategy,
a standard tool in control engineering, to address the limita-
tions outlined above. Even though the aforementioned mod-
els are useful for predicting epidemic spread, they lack the
granularity necessary to analyze individual behaviors during
epidemics and analyze the relationship between individual
decisions and epidemic spread. Therefore, such a high-level
analysis is of limited use to city officials in adjusting public
health policy guidelines [37].

Ill. PROPOSED WORK

In this section, we provide details of the proposed work with
respect to the SIR Model, machine learning and the control
feedback strategy.

A. EVALUATION OF THE SIR MODEL

Multiple mathematical models have been developed to exam-
ine the spread of infection. One of these models is the
SIR model, which is composed of three coupled nonlinear
ordinary differential equations. The model assumes that pop-
ulation size is constant and is divided into three parts: Suscep-
tible (s), Infected (i) and Recovered (r). The SIR differential
equations can be expressed as follows [38]:

;L“Z = —kis(t)i(r) Q)
% = —koilt) + k1 s(0)i(t) @
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TABLE 1. Metrics used in and obtained from SIR curves for different countries.

Initial S, I, R | Imitial k1, ko Time coordinate (intersection point
Country | Start Date Values values IRR k1 k2 of infected and recovered curve) PW
Germany 03/22/20 200000, 1, 1 0.001, 0.001 116.64 | 0.1720 | 0.0015 - 50
India 03/25/20 3000000, 1,1 | 0.001, 0.001 13.87 0.1031 | 0.0075 - 30
Iran 03/14/20 75000, 1, 1 0.001, 0.001 3.52 0.2533 | 0.0720 67.70724716 21
Italy 03/09/20 200000, 1, 1 0.001, 0.001 10.95 0.2100 | 0.0191 95.84883635 49
Japan 03/22/20 18000, 1, 1 0.001, 0.001 5.61 0.1452 | 0.0259 109.40949619 39
uUsS 03/19/20 2000000, 1,1 | 0.001, 0.001 147.58 | 0.1580 | 0.0011 - 50
dr
— = kai(t) (3) (r'(t) — r(1))?
dt E =\ |———F 5
T
where s(¢) = susceptible population at time #, i() = infected LF =aE1 + (1 —a)E; (6)
population at time ¢ and r(¢) = recovered population at time ) )
t, ki = infection rate, and k» = recovery rate. where £ = RMSE error of active cases over a time
In these differential equations, the ratio of constant coeffi- ~ Period 7',

cients, k; (the infection rate of the pathogen) and k5 (its recov-
ery rate), will determine IRR which is kj/kp as described
in [19]. This paper employs a machine learning (ML) model
as discussed in section III-B to predict the optimal values
for ki and kp, which are the constants of the SIR coupled
nonlinear ordinary differential equation, in order to further
analyze the SIR curves. By using these optimal values and
the IRR value, we were able to control the Pulse Width
(PW) parameter, outlined in section III-C1. This was accom-
plished by examining the intersection point between infected
and recovered cases, followed by applying a transfer func-
tion to determine a cutoff-off frequency and then using that
as an on-off rule signal. Here, policies are enforced when
predicted infected patients are greater than predicted recov-
ered patients, and lifted when vice versa, as described in
section III-C1.

B. ML MODELS
We have used ML to predict SIR model and to optimize k;
and k, values.

1) ML APPROACH FOR SIR

ML is applied to the SIR model as described aforementioned
by fitting the SIR curves of a specific time period into the
ML model. The usage information serves as training data
and predicts the curve’s behavior in the future. Using the
predicted curve characteristics, the government can develop a
policy that balances the pandemic with the nation’s economic
activities. The ML model uses a custom Loss Function (LF)
based on the weighted sum of root mean squared errors of
both active and recovered cases. The LF was developed using
the active cases, which include both confirmed cases and
deaths, along with recovered cases. This approach improves
curve fitting optimization since it takes into account both
active and recovered case errors. Here, the LF is defined as

follows:
/ _ 2
g GO @
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E> = RMSE error of recovered cases over a time period 7,
a(t) = number of actual active cases at time ¢,

d'(t) = number of predicted active cases at time ¢,

r(t) = number of actual recovered cases at time ¢,

' () = number of predicted recovered cases at time 7,

T = total number of days in consideration,

o = constant which determines the weights of the total LF.
Specifically, we calculate the LF for training data spanning
over T days, also referred to as time period 7. In addition, ¢
refers to the day of that particular time period.

ML is trained to minimize the LF to find optimal val-
ues of k1 and kp. To minimize the LF, the limited memory
Broyden—Fletcher—Goldfarb—Shanno with bound-constrained
optimization algorithm (L-BFGS-B) algorithm [39] is used
with the minimize optimization function in the scikit-learn
library [40]. Through the training of the ML model, it is
possible to determine the optimal values for k; and k>, which
are the constants in the SIR model.Using SIR differential
equations in conjunction with ML strategies, the model was
trained to predict SIR curves with k| and k» being optimized
after training.

SIR graphs include curves representing actual data, as well
as curves representing S, /, and R curves, which are fitted
curves obtained from training the model, along with a pre-
diction for a near future date. In this study, the initial values
of I and R are taken from real-world data, and the initial
value of the susceptible population is calculated by using the
appropriate ratio when compared with the number of cases in
mainland China.

Table 1 shows that the default values for k; and k» which
are set as 0.001. Observations have shown that when the
initial values of the S, I, and R populations are changed, the
curves change and take on a new shape and behavior. This
behavior will be described in the results section. By using
ML, the k; and kp parameters of the SIR model are opti-
mized to find the point of intersection for infected and recov-
ered cases. A simple, but elegant method for controlling the
multiple input signals related to the various trigger points is
to look at the intersection point between the patients who
are infected and those who have recovered. These trigger
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points are denoted by phases, with phase (P1) policies being
enforced when predicted infected patients exceed predicted
recovered patients and phase (P3) policies being unenforced
when predicted infected patients fall below predicted recov-
ered patients. Feedback control can be used to modulate sig-
nals between phases, as discussed in section III-C.

2) REGRESSION ANALYSIS

The polynomial regression model [41] was evaluated as a
tool for forecasting and predicting the pandemic confirmed,
recovered, and infected data as represented by function of
(x). The output of the polynomial regression function is as
follows:

f@) =co+ex+ex’. . opx” @)

where n is the degree of the polynomial and c is a set of coef-
ficients. We divided the confirmed, recovered, and infected
compartments into training and testing phases, during which
each compartment was trained independently with no corre-
lation between the curves. Each of the polynomial curves can
have different polynomial degrees, which are selected accord-
ing to fitting of the training data, but each polynomial curve
of a country may not necessarily have the same polynomial
degree. In this study, we optimized each curve separately for
the regression model, based on the LF, which is the root mean
square error. The polynomial regression model was then used
to predict the future time period of 10-20 days, with the
regression graph featuring actual data curves in addition to
predicted confirmed, infected, and recovered curves.

C. CONTROL FEEDBACK STRATEGY

The objective is to identify a model that determines what poli-
cies and time-frames the government should adopt. In order
to attain this objective, we introduce the concept of switching
strategy to effectively manage the transition between these
phases utilizing control theory techniques [34]. A key part
of our argument consists of three key points: specifically,
we propose a modulating strategy for on-off policy, present
an elegant method for gathering feedback based on the SIR
model’s predicted parameters, and offer a systematic method
for controlling disease phase transitions.

The control feedback strategy acts as a policy control sig-
nal, whereby policies are initiated (enforced) when predicted
infected patients exceed predicted recovered patients, and
subsequently unenforced when the reverse is true. Since the
IRR is governed by the ratios k1, the infection rate, and k>,
the recovery rate, these values are analyzed to adjust the PW
parameters of the on-off signal, outlined in section III-C1.
In addition, we use linear time-invariant transfer function to
optimize the duty cycle and the width of the on-off signals
for policy control. This model presents an enumeration of
IRR values that is based on heuristics. Thus, the enumeration
of values is categorized into various states corresponding to
various policies. It is based on the pandemic control signal
that the model suggests which policy and time-frame the
government should follow. In the following sections, we will
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discuss the concept of modulated control signal and the linear
time-invariant transfer function.

1) CONTROL SIGNAL

The Pulse Width Modulation (PWM) technique is used to
reproduce the amplitude of an analog input signal by gen-
erating pulses of variable width. With PWM phase control,
the phases are driven by a series of “ON-OFF” pulses, while
varying the duty cycle (a percentage of time when the output
voltage is “ON” as compared to “OFF”’) while maintaining
the frequency. A PWM signal’s ON time can be adjusted (or
modulated) as desired, since it is a digital, unipolar square
wave signal. Generally, duty cycle (D) is defined as the ratio
of ON time to signal period, that is, D = M /T, where M is
the duty cycle time and 7 is the duration time. There is arange
between 0 and 1 and D can also be expressed in percentage
terms, i.e. from 0% to 100%. Control is achieved by varying
the duty cycle of the control signal. Figure 1 shows the PWM
signal with two basic time periods. Here, frequency (F) is the
reciprocal of the duration time, F = 1/T with the standard unit
of frequency represented as Hertz (Hz).

Voltage PWM signal

Duty Cycle F =1/T (Hz)

» Time

«—>!

A
Amplitude
Time
S
—>

Duration Time

FIGURE 1. PWM signal with two basic time periods.

In the SIR model, the constant value determines the PW of
the control signal, enabling the government to decide which
policy to implement. In addition, the constants k; and k> of
those differential equations are also used to calculate the IRR,
which is defined as kj/k>. In this study, a square wave is
used as the control signal, while a PWM signal controls when
the signal is turned on or off. Digital signals can be either
0 or 1, so we used a signal value of 1 to represent complete
lockdown, in other words, strict restriction policies must be
implemented, and O to represent no restriction. Actions are
defined as enforcement of a policy within a specific phase.
Figure 2 illustrates the phase transitions.

Specifically, the PW is calculated as the difference in x
coordinates between the first date in the training data and the
intersection point of the SIR curves for infected and recovered
patients. The start date is the first date in the training data that
is considered in training the model. Thus, pandemic control
can only be achieved if real cases follow the path of the pre-
dicted curves after this tipping point. It is often the case that
the curves do not intersect in the near future due to the IRR
being high or an epidemic ravaging the country. Therefore,
instead of using a large PW in such cases, we use thresholds
of IRR values to define the PW as follows:
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Control signal

Py
PW1 2

“« / \\/-\/ P

f\"h/ PW2 PW3 a

Mar 1, 2020 Apr 30 Jun 18 Aug B 27 Nov 16

FIGURE 2. Definition of the phase repetition interval [Reproduced
from [43]].

o A default PW of 50 days is applied when the infected
and recovered cases do not intersect in the near future
and IRR > 100.

o The default value is set at 40 days when 60 < IRR <
100.

o The default value is 30 days when IRR < 60.

Following the control signal, the government then applies
its policies in phases to the population. In the case of a simple
square wave, it is suggested that a lockdown is implemented
during the duty cycle width, along with strict policies for the
on-off periods. The lockdown is abruptly imposed on the pub-
lic without warning, just as the off policy is abruptly retracted
since all restrictions are revoked at once [34]. Nevertheless,
the goal is to implement restrictions gradually so that they
have the least economic impact on the population and main-
tain a balance between public health and economic needs.
In the next section, we will introduce the transfer function,
along with the control signal, to present an enumeration of
IRR values based on heuristics. Therefore, the enumeration
of values is divided into a variety of states corresponding
to various policies. It uses a pandemic control signal that
passes through a transfer function controlled by IRR values to
suggest what policies and timescales the government should
follow.

2) TRANSFER FUNCTION

The control signal’s output is modeled by a linear time invari-
ant transfer function [42]. The input x(¢) is used to create
a general linear time invariant system, and the output y(¢)
is used to obtain the bilateral Laplace transform x(¢) and
y(t) [42]:

o0

X(s) = L(x(1)) = / x(t)e " dt ®)
Y(s) = L) = / y(t)e " dt 9

where X(s) and Y (s) are the Laplace transform of x(¢) and
¥(t), respectively, and s is a complex number that repre-
sents the frequency parameter. The transfer function H(s)
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represents the relationship between the output signal Y (s) of a
control system and the input signal X (s), for all possible input
values, and is defined as follows [42]:
Y(s)
H(s) = — (10)
X(s)
We will assume the system is a simple single-pole filter in
this article, with the following characteristics [42]:

wQ

H(s) = 11
() =< i (11
With the above equations where wy is proposed as:
kiIn(IRR
wo = kiIn(RR) (12)

2

Modulated control signals can be passed through a transfer
function, where the PW of the input signal and the pole of
the transfer function are set by parameters of the SIR model.
If only square waves are used, it is suggested that the pub-
lic be locked down together with strict on-off policies, but
instead, the lockdown is abruptly imposed without warning
and the off policy is suddenly retracted since all restrictions
are revoked at once. Instead, a control signal through a trans-
fer function is used to allow a gradual implementation of
policies.

Following the filtering phase, the control signal enters
the state of imposition of the most restrictive measures that
have the least economic impact on the population and main-
tain a balance between public health and economic needs.
Restrictions are implemented progressively, depending on
IRR and kj. For instance, in a country with a high IRR
imposing complete lockdown occurs more quickly, with
fewer intermediate state of pandemic control. As the y-value
changes within the PW from O to 1, indicating a specific
policy should be implemented by the government. The grad-
ual implementation of policies ensures that economic activ-
ities are not disrupted and stricter policies are only imposed
when necessary. In Figure 3, phase transitions and state tran-
sitions are illustrated by using a modulated signal through
a transfer function while considering the parameters of the
SIR model.

Table 1 provides the data for feeding into the ML model for
each of the six countries included in the study, as well as the
IRR, k1, and k; outputs of the ML model. The optimal values
are obtained using the L-BFGS-B algorithm after a model

—— PWM Contol Signal Input X(s)
s, Output of the Controlled Signal Y(s), where w=3;

s
\A\
<

>
>
<

Amplitude of the Modulation Signal
2
e
>

Phase (P,)

0 1 2 3 5
Time (days)

FIGURE 3. Phase transitions and state transition illustration where states
(So-Se) are defined in Section IV-C.
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B o his0iC)
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%, ei(t) + kus(t)i(1)
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o = kil
a —l
wy =
— 2
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Wo
X(t) HS) =05 Y(t)
0 Control

Transfer Function output signal

Feedback
signal

—
|

width

puise ‘

Pulse repetition
interval

Reference Input Signal

FIGURE 4. Closed loop control system for policy enforcement.

has been fitted using SIR differential equations. Additionally,
it displays the x-coordinate of the point of intersection of each
country’s infected and recovered curve, as well as the PW of
the control signal.

D. CONTROL FEEDBACK STRATEGY FOR POLICY
MANAGEMENT

By coupling PWM and linear time-invariant transfer function,
a control feedback strategy for policy management can be
formed whereby specific policies can be applied gradually
and turned on and off according to policy enforcement needs.
The framework of the proposed work is shown in Figure 4.
As seen from figure, the model has four components namely
SIR model, input signal, feedback signal and transfer func-
tion. SIR model is used to predict the number of suscepti-
ble, infected, and recovered cases. Machine learning is then
used to predict the optimal values of kj and k, from the SIR
model. Predicted values of k; and k; values are later used to
determine IRR values. IRR values determine which policies
should be implemented and how aggressively they should be
implemented. The poles of the linear time-invariant transfer
function (wp) are then determined by the IRR values. The
transfer function allows us to experiment with different policy
control strategies based on predicted values of the SIR model
at different orders of differentiation. PWM acts like ““control
knobs™ phases, which turn on (enforce) policies when pre-
dicted infected patients exceed predicted recovered patients
and turn off (will not enforce) policies when predicted recov-
ered patients surpass predicted infected patients. PWM con-
trols phase transitions based on a series of “ON-OFF”’ pulses
while varying the duty cycle according to the intersection
point between infected and recovered patients. To make
the transition between these phases as smooth as possible,
a control feedback strategy has been designed to manage
the transition between these phases. By coupling the transfer
function and PWM, restrictions can be implemented grad-
ually to maintain the balance between public health and
economic interests. Initial control signals are square waves,
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then PWM signals regulate when the signal is ON-OFF
and consequently transfer function is used to implement
the policy at different states depending on optimized IRR
values. In this way, policy enforcement can be imple-
mented gradually and turned on/off as necessary, rather than
abruptly imposed on the public without warning during the
phase.

IV. RESULTS

A. DATASET

SIR curves were plotted using dataset from John Hopkins
University (JHU), which includes a time series of COVID-19
cases [43]. The dataset contains country-specific distribu-
tions of confirmed cases, deaths, and recovered cases, as well
as day-specific counts for each category. The dataset is a
time-series dataset which covers covid information for a dura-
tion of 510 days from 1/22/20 - 6/14/21. The instances of data
or number of days used for training varies for each country
and we match the training data duration in such a way that
data before the onset of covid-spread in a country is used
for training and the SIR curves are predicted for the next
30 days (which is the size of testing data). The instances used
in training in days can be calculated by subtracting the start
date with 22/1/20. Start date can be obtained from Table 1.
For instance- training data size for Germany is 60 days =
3/22/20 - 1/22/20 and the number of days for which the curves
are predicted (test data size) = 30 days.

B. SIR CURVES ON ACTUAL DATA

To demonstrate the predictability of SIR curves, six countries
were selected from around the world, including the US, India,
Iran, Italy, Germany, and Japan. The COVID-19 pandemic
curve is drawn from January 22, 2020 forward, with each
country having its own demographics, social habits, and poli-
cies regarding the pandemic.

Figures 5(a)-(c) and Figures 6(a)-(c), show the SIR graphs
for India, Italy, Iran, Germany, the US and Japan, respectively.
Here, the blue line represents the number of active cases
in the country. The red dashed line and red dashed rectan-
gle represents the predicted behavior of the infected curve
and the actual behavior of infected cases across the coun-
try respectively. The green dotted line and the green dotted
circle represents the predicted behavior of recovered cases
and actual recovered cases in the country respectively. Plot-
ting SIR graphs of India, Italy, Iran, and Germany show the
least variation between actual and predicted values. By con-
trast, Japan’s and the U.S.s ‘actual’ values do not match
with the regression predictions. It is because these countries
have implemented some restrictive measures to combat the
spread of the disease. In the year 2020, the spread in the
US was growing at a faster rate, and the IRR reached 150,
which was alarming. Our hypothesis suggests that a nation-
wide lockdown could have prevented widespread disruptions
caused by the COVID-19 pandemic. The plot shows that,
in the US, imposing a lockdown would have decreased the
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FIGURE 5. SIR curves and its prediction compared to actual data for (a) India (b) Italy, and (c) Iran. The blue line represents the number of
active cases in the country. The red dashed line represents the predicted behavior of the infected curve. The red dashed rectangle represents
the actual behavior of infected cases across the country. The green dotted line represents the predicted behavior of recovered cases. The green

dotted circle represents actual recovered cases in the country.

rate of infection, which was consistently increasing. Despite
the regression model’s prediction, the Japanese authorities
were able to prevent worse conditions than those predicted.
A major reason for Japan’s success is the government’s insis-
tence on mask usage. Japan’s excellent medical infrastruc-
ture, together with those measures, enabled it to control the
pandemic early on, as shown in Figure 6(c).

C. POLICY SIGNAL GRAPHS
The policy signal graphs for the US, Japan, Italy,
Iran, Germany, and India are shown in Figures 7(a)-(f)
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respectively. The black line represents the proposed policy
control signal to be implemented by the country. The black
policy control signal is the output signal of the transfer func-
tion when the red square wave is fed through as input. Policy
signal graphs illustrate which policies should be implemented
based on indicators like infection rate and IRR, as well as how
decisions should change as the policy signal changes. Dashed
lines on these graphs represent square wave signals with PWs
as in Table 1, while solid lines represent the control signal
passing through a single-pole filter with g as the pole. As the
final control signal is not a square wave, it suggests gradual
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FIGURE 6. SIR curves and its prediction compared to actual data

(c) SIR Curves for Japan

in (a) Germany, (b) US, and (c) Japan. The blue line represents the

number of active cases in the country. The red dashed line represents the predicted behavior of the infected curve. The red dashed
rectangle represents the actual behavior of infected cases across the country. The green dotted line represents the predicted behavior
of recovered cases. The green dotted circle represents actual recovered cases in the country.

implementation and lifting of all policy measures. It also
suggests implementing restrictions in a phased or stepped
manner.

Depending on IRR thresholds, policy implementation is
divided into seven states represented by S. The policies and
thresholds are outlined below.

1) So, if 0 <IRR< 2: No restrictive policies should be

implemented

2) Sy, if 2 <IRR< 5: Wear mask and sanitize your hand
regularly

3) S»,if 5 <IRR< 10: Practice social distancing at public
places
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4) §3,1f 10 <IRR< 20: Encourage people to stay at home.
Companies to work with 50% capacity

5) S84, if20 <IRR< 50: Weekend lockdown policy should
be implemented.

6) Ss,if50 <IRR< 80: Weekend lockdown policy should
be implemented. Also, only essential services should be
running in the country and for fixed time.

7) Se, if IRR> 80: Complete lockdown.

The control signal’s y-coordinates are used to determine
which policy to adopt. If a country has a high IRR factor,
such as the US, there is less time spent in Sy to S5 states
and, therefore, reaching S¢ state is relatively faster than with
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FIGURE 7. The predicted policy control signal to be implemented in (a) US, (b) Japan, (c) Italy, (d) Iran, (e) Germany, and (f) India. The
dotted red signal is a square with PW as shown in Table 1. The black line represents the proposed policy control signal to be
implemented by the country. The black policy control signal is the output signal of the transfer function when the red square wave is fed

through as input.

TABLE 2. State and control signal relationship.

y-coordinate of the | state of the
control signal country

0t00.2 So
0.2t00.4 S1
0.41t00.5 So
0.5t0 0.6 S3
0.6t0 0.9 Sy
09to1 S

1 Se

respect to Japan, which has a low IRR factor. As seen from
the PW of Japan, the majority part of the PW indicates the
country falls into the state S3 to Ss state. In contrast to Iran,
the control signal does not indicate a total lockdown within
the next 30 days.

In Table 2, we show the y-coordinate of the control sig-
nal and the policy that a country needs to follow to attain
a given state. Depending on the pandemic control signal’s
x-coordinate interval, the country determines how long it will
take to implement a particular policy.

D. REGRESSION CURVES ON ACTUAL DATA

The polynomial regression model is utilized to plot and fore-
cast active cases, infected cases, and recovered cases for each
of the six countries. Figures 8(a)-(c) and 9(a)-(c) illustrate
the regression curves for the US, Japan, Italy, Iran, Germany,
and India. Here, starred dashed blue line and dotted blue
line represents the predicted behaviour of active cases and
the actual behaviour of active cases in the country respec-
tively. Crossed dashed red line and dashed red line rep-
resents the predicted behaviour of infected curve and the
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actual behaviour of infected cases in the country respectively.
Circled dashed green line and dashed green line represents
the predicted behaviour of recovered curve and the actual
behaviour of recovered cases in the country respectively.
From the figures it can be seen that fitting the polynomial
regression model to training data is more accurate in coun-
tries where the pandemic is just beginning or growing rapidly
than in countries that do not exhibit those behaviors. When
compared to India and the US, other countries where the
number of infected cases is decreasing have more error while
fitting the polynomial regression model and gives relatively
poor results for the duration of the pandemic. In those coun-
tries applying the policy when rate of change of infection
increases the recovery rate would be much beneficial rather
than applying at a later stage. For instance, in Japan and Italy
the policy could have started at a early month of March rather
than waiting till the end of the month. We can also conclude
that if the regression model is applied at the beginning of
an outbreak it can give much better and accurate results and
applying policies at those stages could effectively control the
pandemic.

E. COMPARATIVE ANALYSIS BETWEEN SIR AND
REGRESSION

Based on the SIR model and the regression model, we have
modeled the COVID-19 pandemic. Based on our find-
ings, SIR model is better at predicting curves over a long
period of time than regression models, whereas regression
models are better at predicting curves in the early phases
of viral outbreaks. In the SIR model, the curves corre-
sponding to susceptible, infected, and recovered are related

98253



IEEE Access

K. Narayan et al.: Using Epidemic Modeling, Machine Learning and Control Feedback Strategy

----- Active Cases

=#= Predicted Active Cases “’*”‘D-H’
15M s Recovered Cases —et?
++e Predicted Recovered Cases w2
w4
= = Infected Cases 2 .
- ~4+— Predicted Infected Cases Ko
v N
& M "ﬂ‘ A o,
8 L4 ™ >
P
o . e
= L F
° Lt
=4 ER
3 esetonl
O osM \3?‘
&
wt
e oo
P ety reseestemssTeess
0 (o220
e e e e L e
SNEBUSgdNgIagaa SRR RNSEgSS g ay ARSI R B s B S T s s s e I I I s - e e NNy
H20 28 S Rpl¥lIdoodndogs o llaneolad 2o iipl¥PdoondegooRpldodesnuwy
IR I IS IR~ S i S i i R S S I B SEI S E E S B B B B e SR SRR SH SRS e B B I BV B S S S B B B B B SR
38888 S858888888 585588888888 SE85858588888 38888888
Date
(a) Regression Curve for US
35k e Active Cases 5
== Predicted Active Cases -’
30K ---ee Recovered Cases
=& Predicted Recovered Cases
25k = = Infected Cases
e —+— Predicted Infected Cases
b
& 20k
(9]
L]
= A5K
B
>
3
9 10k
sk
Ban
0 SRR RRERF
e e e e e
R R R SRR NN
NreropggNNNSYYensouyY
SonneSEEEE SN RRERNDR
858888 S588888888
(b) Regression Curve for Japan
35K e Active Cases -
—w— Predicted Active Cases .
30K ==+ Recovered Cases P
s
--#- Predicted Recovered Cases :',v'
25k = = Infected Cases
& —+— Predicted Infected Cases
@
@ 20k
u
o
15k
=z
S
3 s
C ok S NN TR,
AT e e ek ek bl e o oy,
g B S A o
5k s £ oy =
& %qaﬂ‘"‘ad = : .-ﬂ”"'"’
G e, bl £ cos .
0 RN RIERRERF
L et N I U IR I I ) O 0 0 e W G B B e e LT T A O U O Y
SN SN CSe GBS S SN NP NNSOS SN S 2 S SN NNNO S U0 E S S S NNNNRNSoGIB g aga SENNNUNES
R e I B I I R e e e e N B B e e A N BN B BN B B e i e e I I B N e e e R~ N N )
SonrRSEEEEononeenoonSEEE S SN onoRennnSEEEEgonnoo eSS EENonnNNoneRRBEl
858888 S588888888 S5588888888 S8E8888888 58888888888

(c) Regression Curve for ltaly

FIGURE 8. Regression curves and its prediction compared to actual data in (a) US, (b) Japan, and (c) Italy. Starred dashed blue line
represents the predicted behaviour of active cases. Dotted blue line represents the actual behaviour of active cases in the country. Crossed
dashed red line represents the predicted behaviour of infected curve. Dashed red line represents the actual behaviour of infected cases in
the country. Circled dashed green line represents the predicted behaviour of recovered curve. Dashed green line represents the actual

behaviour of recovered cases in the country.

since they are modeled using differential equations that
are related. Thus, the constants of SIR differential equa-
tions determine their curve behavior. Since SIR differential
equations and constants govern those equations, all curves
in the SIR model are dependent on each other. On the
other hand, the Active, Recovered, and Infected curves plot-
ted using the regression method are independent of each
other since they are not related by any mathematical con-
dition. Consequently, since each curve has its own train-
ing set, the behavior of one doesn’t affect the behavior of
another.
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In order to compare the models and their curve behavior,

two countries were selected:

o Case I: Ttaly: the selected period includes all the phases
of the pandemic, and thus reveals the rise and fall of the
infected curves (See Figure 8 (¢)).

e Case 2: India: the selected time interval only includes
the beginning of the pandemic, so the infected curve is
only shown for the rising phase of the epidemic (See
Figure 9 (c)).

In the second case, India’s curves only correspond to the
period around the outbreak of the pandemic. As seen in
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FIGURE 9. Regression curves and its prediction compared to actual data in (a) Iran, (b) Germany, and (c) India. Starred dashed blue line
represents the predicted behaviour of active cases. Dotted blue line represents the actual behaviour of active cases in the country.
Crossed dashed red line represents the predicted behaviour of infected curve. Dashed red line represents the actual behaviour of
infected cases in the country. Circled dashed green line represents the predicted behaviour of recovered curve. Dashed green line

represents the actual behaviour of recovered cases in the country.

Figure 9(c), the regression model performs better than the
SIR model for India. The SIR model, in contrast, performs
significantly better at predicting the downfall of recovered
cases in Italy than does a regression model. From the sim-
ulation results, we can conclude that the SIR model performs
well when a longer period of time is taken into consideration
or when the time interval encompasses more phases of the
pandemic.

V. COMPARATIVE ANALYSIS
In this section we provide the qualitative analysis of our work
with the existing state of the art.

Epidemiological models such as the SIR model lack het-
erogeneity and can easily be programmed and analyzed [44].
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There is also a shared opinion that SIR models are not com-
pletely appropriate due to their inflexibility [45]. Unlike exist-
ing SIR and SEIR models [46], our model provides the ability
to predict the critical parameters, such as infection rate and
recovery rate, so that it can adapt to changing policy require-
ments. We observe, for example, that if city-wide lockdown
is applied at a particular instant, i.e., IRR thresholds, it can
lower the transmission rate substantially in comparison to
other epidemiological models. Our method incorporates the
SIR model along with the feedback-based control signal and
transfer function for pandemic control. For instance, in Japan
and Italy the policy could have started early during the month
of March rather than waiting till the end of the month. In mid-
March, for example, the US has an IRR of 147.58 > 80 (i.e.,
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State Sg). In this case, our policy suggested complete lock-
down to reduce the spread of COVID-19. However, in real-
ity, the government started shutting down the public schools
in New York city and Ohio started closing restaurants and
bars [47]. The complete lockdown took a while to be imposed
in those states of the US. Similarly for Germany, we com-
puted IRR as 116.64 > 80 (i.e., State S¢) which is a complete
lockdown phase. However, Germany imposed a partial lock-
down in late March [48].

In contrast, data-driven models require enormous amounts
of data to model behavior and improve learning and are
computationally expensive. ML models used for COVID-19
forecasting, as discussed in [49] and [50], do not efficiently
exploit the fact that the data is time-series data. It does
not include continuous feedback and does not take that into
account when forecasting. Pandemic forecasts are subject to
uncertainty caused by various unknown factors at the time.
Our model which is based on feedback learning has the
advantage of reducing the impact of uncertainty in models;
as a result, if it is designed carefully, a strategy can still be
effective despite inaccurate models.

A commonly cited approach [17], authors used on-off
mechanisms to ease social-distancing measures, by keep-
ing the pandemic R below a certain threshold, where some
restrictions are lifted as the number of new intensive care
cases drops and are reinstated when it exceeds the threshold.
Such an approach is more robust to uncertainties concerning
both the Rg and the severity of the virus, as well as more
flexible and resilient than solutions that are based on fixed
duration. The on-off mechanism is an example of a feed-
back system, in which the feedback variable is the number of
intensive care unit patients. By contrast, the on-off approach
implies that the lockdown is abruptly imposed on the public
without warning, as the off policy is abruptly retracted when
all restrictions are withdrawn at once. The major drawback
to using this type of on-off control mechanism is that it can
create oscillations, if overly too aggressively, overwhelm the
healthcare system’s ability to effectively treat serious condi-
tions. On the other hand, our study uses a feedback mecha-
nism coupled with a transfer function by enumerating IRR
values using heuristics to gradually introduce restrictions so
as to ensure that they have the least economic impact on the
population and maintain a balance between health and pros-
perity. For example, in Italy, the IRR on March 9 was 10.95
(i.e., State S3), where the policy suggested that the city offi-
cials encourage people to stay at home and businesses to oper-
ate at 50% capacity. However, in reality, due to the COVID-19
pandemic in Italy, the Italian government imposed a national
lockdown or quarantine on 9 March 2020 that restricted all
movements of the population except for necessity, work,
and health reasons. As the lockdown is abruptly imposed on
the public without warning, the healthcare system was over-
whelmed, and this can lead to its inability to treat COVID-19.
Nonetheless, as the policy suggested in [17] is only based
on a on-off policy and does not take gradual implementation
into account, it would recommend a full lockdown within the
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same period instead of the above measure. This is because
the infection rate is higher than the recovery rate. As a result
of gradual implementation, the health care system does not
overload and is capable of effectively treating pandemic.

VI. LIMITATIONS OF THE STUDY

In the paper, data analysis has been conducted using Covid-
19, 2020 datasets. In addition, the study examines threshold
mechanisms for implementing state policies during pandemic
outbreaks. The threshold values for these policies were deter-
mined with a limited dataset. We plan to use ML in the future
to calculate and predict the threshold for implementing pan-
demic policies during outbreaks of pandemics.

VIl. CONCLUSION
This paper utilizes SIR, feedback strategy based on con-
trol theory and regression models to study the behavior of
COVID-19 pandemic. It was deduced that the SIR model
is best suited for analyzing long-term trends in the spread
of diseases, whereas the regression model provides better
results during the outbreak phase than the SIR model. The
results can be quantified using mean squared error between
the predicted values and the actual values. At an early stage
of the pandemic, it is evident from the results shown in the
paper that there is a large difference between the predicted
and the actual number of infected people curves. Based on
the graphical result and the mean squared error, it shows that
the SIR model cannot provide a useful early prediction of
the epidemic in this case. However, we use the SIR param-
eters along with feedback based control theory in order to
implement policy guidelines in the form of phases and states.
Control feedback strategy helped to determine not only the
type of policy that should be implemented in the country but
also the length of the time it should be implemented for. The
model was comparatively evaluated with regression analy-
sis in understanding when and where the pandemic strategy
should be employed. As a result of this study, the coun-
try officials would be able to control the pandemic and not
impact the economy negatively. In countries such as India
and the US, the SIR curves do not converge because the
infection rate increases much faster than the recovery rate.
In addition, it was found that the SIR model along with
machine learning accurately computed the actual and pre-
dicted cases for all countries with the exception of Japan
and US since these countries did not implement a policy
control strategy at an early stage, whereas India, Iran, Italy,
and Germany did. Furthermore, based on SIR parameters
and feedback strategy based on control theory the states that
we proposed can be effectively used by the public officials.
It was found that if these state policies were implemented
at the right time, the pandemic would have been controlled
without affecting the economy of all the aforementioned
countries.

For future work, we plan to use ML for predicting IRR
values. Furthermore, the idea for the control feedback strat-
egy for policy management can be tried in different use-cases
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for pandemic control, two of which are presented here.
On account of pandemic spread, it is basic to know the spa-
tio temporal feedback to investigate the effect of individu-
als relocating between different countries or clusters. Such
movement presents vulnerabilities in the model which can
be concentrated on utilizing the idea proposed in this paper.
Besides, there are various COVID-19 episodes in which
an infected individual probably infected 80% or a greater
amount of individuals in room in only a couple hours [51],
though in different cases it was considerably less infectious.
Such an over-dispersive and super-spreading conduct of this
infection brings imbalanced dissemination of cases [52]. This
sort of situation, shifting back and forth between being infec-
tious and noninfectious, caught by over-dispersion factor,
can be concentrated on utilizing the idea proposed in this

paper.
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